55 research outputs found

    Protocol for tissue clearing and 3D analysis of dopamine neurons in the developing mouse midbrain

    Get PDF
    Advances in tissue clearing enable analysis of complex migratory patterns of developing neurons in whole intact tissue. Here, we implemented a modified version of 3DISCO to study migration of midbrain dopamine (DA) neurons. We provide a detailed protocol starting from whole-brain immunostaining, tissue clearing, and ultramicroscopic imaging to post-acquisition quantification and analysis. This protocol enables precise quantification of DA neuron migration but can also be applied more generally for analyzing neuron migration throughout the nervous system. For complete details on the use and execution of this protocol, please refer to Brignani et al. (2020)

    The mouse brain after foot shock in four dimensions:Temporal dynamics at a single-cell resolution

    Get PDF
    Acute stress leads to sequential activation of functional brain networks. A biologically relevant question is exactly which (single) cells belonging to brain networks are changed in activity over time after acute stress across the entire brain. We developed a preprocessing and analytical pipeline to chart whole-brain immediate early genes’ expression—as proxy for cellular activity—after a single stressful foot shock in four dimensions: that is, from functional networks up to three-dimensional (3D) single-cell resolution and over time. The pipeline is available as an R package. Most brain areas (96%) showed increased numbers of c-fos+ cells after foot shock, yet hypothalamic areas stood out as being most active and prompt in their activation, followed by amygdalar, prefrontal, hippocampal, and finally, thalamic areas. At the cellular level, c-fos+ density clearly shifted over time across subareas, as illustrated for the basolateral amygdala. Moreover, some brain areas showed increased numbers of c-fos+ cells, while others—like the dentate gyrus—dramatically increased c-fos intensity in just a subset of cells, reminiscent of engrams; importantly, this “strategy” changed after foot shock in half of the brain areas. One of the strengths of our approach is that single-cell data were simultaneously examined across all of the 90 brain areas and can be visualized in 3D in our interactive web portal

    Subdomain-mediated axon-axon signaling and chemoattraction cooperate to regulate afferent innervation of the lateral habenula

    Get PDF
    A dominant feature of neural circuitry is the organization of neuronal projections and synapses into specific brain nuclei or laminae. Lamina-specific connectivity is controlled by the selective expression of extracellular guidance and adhesion molecules in the target field. However, how (sub)nucleus-specific connections are established and whether axon-derived cues contribute to subdomain targeting are largely unknown. Here, we demonstrate that the lateral subnucleus of the habenula (lHb) determines its own afferent innervation by sending out efferent projections that express the cell adhesion molecule LAMP to reciprocally collect and guide dopaminergic afferents to the lHb-a phenomenon we term subdomain-mediated axon-axon signaling. This process of reciprocal axon-axon interactions cooperates with lHb-specific chemoattraction mediated by Netrin-1, which controls axon target entry, to ensure specific innervation of the lHb. We propose that cooperation between pretarget reciprocal axon-axon signaling and subdomain-restricted instructive cues provides a highly precise and general mechanism to establish subdomain-specific neural circuitry

    Purkinje cell microzones mediate distinct kinematics of a single movement

    Get PDF
    The classification of neuronal subpopulations has significantly advanced, yet its relevance for behavior remains unclear. The highly organized flocculus of the cerebellum, known to fine-tune multi-axial eye movements, is an ideal substrate for the study of potential functions of neuronal subpopulations. Here, we demonstrate that its recently identified subpopulations of 9+ and 9- Purkinje cells exhibit an intermediate Aldolase C expression and electrophysiological profile, providing evidence for a graded continuum of intrinsic properties among PC subpopulations. By identifying and utilizing two Cre-lines that genetically target these floccular domains, we show with high spatial specificity that these subpopulations of Purkinje cells participate in separate micromodules with topographically organized connections. Finally, optogenetic excitation of the respective subpopulations results in movements around the same axis in space, yet with distinct kinematic profiles. These results indicate that Purkinje cell subpopulations integrate in discrete circuits and mediate particular parameters of single movements

    Prebiotic diet normalizes aberrant immune and behavioral phenotypes in a mouse model of autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD

    ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes

    Get PDF
    Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43Tg-ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy

    Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns

    Get PDF
    SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRSS2) to facilitate viral-host membrane fusion. ACE2 and TMPRSS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq levels. However, transcriptomic data and actual protein validation convey conflicting information regarding the distribution of the biologically relevant protein receptor in whole tissues. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRSS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals was stained using antibodies against ACE2 and TMPRSS2, combined with SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize their expression and related infection patterns. The data demonstrate that infection is restricted to sites containing both ACE2 and TMPRSS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the bronchioles and alveoli. Conversely, infection completely overlaps where ACE2 and TMPRSS2 co-localize in the tertiary bronchi, bronchioles, and alveoli

    Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids

    Get PDF
    A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies

    MICALs in control of the cytoskeleton, exocytosis, and cell death

    Get PDF
    MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases
    corecore