87 research outputs found

    Dislocation lines as the precursor of the melting of crystalline solids observed in Monte Carlo simulations

    Full text link
    The microscopic mechanism of the melting of a crystal is analyzed by the constant pressure Monte Carlo simulation of a Lennard-Jones fcc system. Beyond a temperature of the order of 0.8 of the melting temperature, we found that the relevant excitations are lines of defects. Each of these lines has the structure of a random walk of various lengths on an fcc defect lattice. We identify these lines with the dislocation ones proposed in recent phenomenological theories of melting. Near melting we find the appearance of long lines that cross the whole system. We suggest that these long lines are the precursor of the melting process.Comment: 5 pages, 5 figures, accepted in Physical Review Letter

    The Triplet State of Z 2

    No full text

    Exploration of ultralight nanofiber aerogels as particle filters : capacity and efficiency

    No full text
    Ultralight nanofiber aerogels (NFAs) or nanofiber sponges are a truly three-dimensional derivative of the intrinsically flat electrospun nanofiber mats or membranes (NFMs). Here we investigated the potential of such materials for particle or aerosol filtration because particle filtration is a major application of NFMs. Ultralight NFAs were synthesized from electrospun nanofibers using a solid-templating technique. These materials had a tunable hierarchical cellular open-pore structure. We observed high filtration efficiencies of up to 99.999% at the most penetrating particle size. By tailoring the porosity of the NFAs through the processing parameters, we were able to adjust the number of permeated particles by a factor of 1000 and the pressure drop by a factor of 9. These NFAs acted as a deep-bed filter, and they were capable of handling high dust loadings without any indication of performance loss or an increase in the pressure drop. When the face velocity was increased from 0.75 to 6 cm s-1, the filtration efficiency remained high within a factor of 1.1-10. Both characteristics were in contrast to the behavior of two commercial NFM particle filters, which showed significant increases in the pressure drop with the filtration time as well as a susceptibility against high face velocities by a factor of 105
    corecore