12,188 research outputs found

    No Eigenvalue in Finite Quantum Electrodynamics

    Get PDF
    We re-examine Quantum Electrodynamics (QED) with massless electron as a finite quantum field theory as advocated by Gell-Mann-Low, Baker-Johnson, Adler, Jackiw and others. We analyze the Dyson-Schwinger equation satisfied by the massless electron in finite QED and conclude that the theory admits no nontrivial eigenvalue for the fine structure constant.Comment: 13 pages, Late

    Chiral Anomaly Effects and the BaBar Measurements of the γγπ0\gamma\gamma^{*}\to \pi^{0} Transition Form Factor

    Full text link
    The recent BaBar measurements of the γγπ0\gamma\gamma^{*}\to \pi^{0} transition form factor show spectacular deviation from perturbative QCD prediction for large space-like Q2Q^{2} up to 34GeV234\,\rm GeV^{2}. When plotted against Q2Q^{2}, Q2F(Q2)Q^{2}F(Q^{2}) shows steady increase with Q2Q^{2} in contrast with the flat Q2Q^{2} behavior predicted by perturbative QCD, and at 34GeV234\,\rm GeV^{2} is more than 50% larger than the QCD prediction. Stimulated by the BaBar measurements, we revisit our previous paper on the cancellation of anomaly effects in high energy processes Z0π0γZ^{0}\to \pi^{0}\gamma, e+eπ0γe^{+}e^{-}\to \pi^{0}\gamma and apply our results to the γγπ0\gamma^{*}\gamma\to \pi^{0} transition form factor measured in the e+ee+eπ0e^{+}e^{-}\to e^{+}e^{-}\pi^{0} process with one highly virtual photon. We find that, the transition form factor F(Q2)F(Q^{2}) behaves as (m2Q2)×(ln(Q2/m2))2(\frac{m^{2}}{Q^{2}})\times (\ln(Q^{2}/m^{2}))^{2} and produces a striking agreement with the BaBar data for Q2F(Q2)Q^{2}F(Q^{2}) with m=132MeVm=132\,\rm MeV which also reproduces very well the CLEO data at lower Q2Q^{2}.Comment: v4, LaTeX, 8 pages, one figure, minor changes(references), to appear in Int. J. Mod. Phys.

    Characteristic Lie rings, finitely-generated modules and integrability conditions for 2+1 dimensional lattices

    Full text link
    Characteristic Lie rings for Toda type 2+1 dimensional lattices are defined. Some properties of these rings are studied. Infinite sequence of special kind modules are introduced. It is proved that for known integrable lattices these modules are finitely generated. Classification algorithm based on this observation is briefly discussed.Comment: 11 page

    Light Baryon Resonances: Restrictions and Perspectives

    Full text link
    The problem of nucleon resonances N' with masses below the Delta is considered. We derive bounds for the properties of such states. Some of these are new, while others improve upon existing limits. We discuss the nature of N' states, and their unitary partners, assuming their existence can be verified.Comment: 11 pages, 11 figur

    Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC

    Full text link
    The suppression of single jets at high transverse momenta in a quark-gluon plasma is studied at RHIC energies, and the additional information provided by a photon tag is included. The energy loss of hard jets traversing through the medium is evaluated in the AMY formalism, by consistently taking into account the contributions from radiative events and from elastic collisions at leading order in the coupling. The strongly-interacting medium in these collisions is modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these ingredients together with a complete set of photon-production processes, we present a calculation of the nuclear modification of single jets and photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), typos corrected, published versio

    Gravitomagnetism in Quantum Mechanics

    Full text link
    We give a systematic treatment of the quantum mechanics of a spin zero particle in a combined electromagnetic field and a weak gravitational field, which is produced by a slow moving matter source. The analysis is based on the Klein-Gordon equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The Klein-Gordon equation is recast into Schroedinger equation form (SEF), which we then analyze in the non-relativistic limit. We include a discussion of some rather general observable physical effects implied by the SEF, concentrating on gravitomagnetism. Of particular interest is the interaction of the orbital angular momentum of the particle with the gravitomagnetic field.Comment: 9 page

    Ionization dynamics in intense pulsed laser radiation. Effects of frequency chirping

    Full text link
    Via a non-perturbative method we study the population dynamics and photoelectron spectra of Cs atoms subject to intense chirped laser pulses, with gaussian beams. We include above threshold ionization spectral peaks. The frequency of the laser is near resonance with the 6s-7p transition. Dominant couplings are included exactly, weaker ones accounted for perturbatively. We calculate the relevant transition matrix elements, including spin-orbit coupling. The pulse is taken to be a hyperbolic secant in time and the chirping a hyperbolic tangent. This choice allows the equations of motions for the probability amplitudes to be solved analytically as a series expansion in the variable u=(tanh(pi t/tau)+1)/2, where tau is a measure of the pulse length. We find that the chirping changes the ionization dynamics and the photoelectron spectra noticeably, especially for longer pulses of the order of 10^4 a.u. The peaks shift and change in height, and interference effects between the 7p levels are enhanced or diminished according to the amount of chirping and its sign. The integrated ionization probability is not strongly affected.Comment: Accepted by J. Phys. B; 18 pages, 17 figures. Latex, uses ioplppt.sty, iopl10.sty and psfig.st

    CGC, Hydrodynamics, and the Parton Energy Loss

    Full text link
    Hadron spectra in Au+Au collisions at RHIC are calculated by hydrodynamics with initial conditions from the Color Glass Condensate (CGC). Minijet components with parton energy loss in medium are also taken into account by using parton density obtained from hydrodynamical simulations. We found that CGC provides a good initial condition for hydrodynamics in Au+Au collisions at RHIC.Comment: Quark Matter 2004 contribution, 4 pages, 2 figure

    Occam's Higgs: A Phenomenological Solution to the Electroweak Hierarchy Problem

    Full text link
    We propose a phenomenological solution to the Electroweak hierarchy problem. It predicts no new particles beyond those in the Standard Model. The Higgs is arbitrarily massive and slow-roll inflation can be implemented naturally. Loop corrections will be negligible even for large cutoffs.Comment: 7 pp., 2 figs., LaTeX. Slight rewordin

    On Effective Superpotentials and Compactification to Three Dimensions

    Full text link
    We study four dimensional N=2 SO/SP supersymmetric gauge theory on R^3\times S^1 deformed by a tree level superpotential. We will show that the exact superpotential can be obtained by making use of the Lax matrix of the corresponding integrable model which is the periodic Toda lattice. The connection between vacua of SO(2N) and SO(2kN-2k+2) can also be seen in this framework. Similar analysis can also be applied for SO(2N+1) and SP(2N).Comment: 18 pages, latex file, v2: typos corrected, refs adde
    corecore