85 research outputs found

    On the structure of the B\"acklund transformations for the relativistic lattices

    Full text link
    The B\"acklund transformations for the relativistic lattices of the Toda type and their discrete analogues can be obtained as the composition of two duality transformations. The condition of invariance under this composition allows to distinguish effectively the integrable cases. Iterations of the B\"acklund transformations can be described in the terms of nonrelativistic lattices of the Toda type. Several multifield generalizations are presented

    Higher Dimensional Classical W-Algebras

    Full text link
    Classical WW-algebras in higher dimensions are constructed. This is achieved by generalizing the classical Gel'fand-Dickey brackets to the commutative limit of the ring of classical pseudodifferential operators in arbitrary dimension. These WW-algebras are the Poisson structures associated with a higher dimensional version of the Khokhlov-Zabolotskaya hierarchy (dispersionless KP-hierarchy). The two dimensional case is worked out explicitly and it is shown that the role of DiffS(1)S(1) is taken by the algebra of generators of local diffeomorphisms in two dimensions.Comment: 22 pages, Plain TeX, KUL-TF-92/19, US-FT/6-9

    Poisson-Lie group of pseudodifferential symbols

    Full text link
    We introduce a Lie bialgebra structure on the central extension of the Lie algebra of differential operators on the line and the circle (with scalar or matrix coefficients). This defines a Poisson--Lie structure on the dual group of pseudodifferential symbols of an arbitrary real (or complex) order. We show that the usual (second) Benney, KdV (or GL_n--Adler--Gelfand--Dickey) and KP Poisson structures are naturally realized as restrictions of this Poisson structure to submanifolds of this ``universal'' Poisson--Lie group. Moreover, the reduced (=SL_n) versions of these manifolds (W_n-algebras in physical terminology) can be viewed as subspaces of the quotient (or Poisson reduction) of this Poisson--Lie group by the dressing action of the group of functions. Finally, we define an infinite set of functions in involution on the Poisson--Lie group that give the standard families of Hamiltonians when restricted to the submanifolds mentioned above. The Poisson structure and Hamiltonians on the whole group interpolate between the Poisson structures and Hamiltonians of Benney, KP and KdV flows. We also discuss the geometrical meaning of W_\infty as a limit of Poisson algebras W_\epsilon as \epsilon goes to 0.Comment: 64 pages, no figure

    Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction

    Get PDF
    The p×pp\times p matrix version of the rr-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra gl^pr⊗C[λ,λ−1]\widehat{gl}_{pr}\otimes {\Complex}[\lambda, \lambda^{-1}]. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algebra gl^pr+s⊗C[λ,λ−1]\widehat{gl}_{pr+s}\otimes {\Complex}[\lambda,\lambda^{-1}] using the natural embedding glpr⊂glpr+sgl_{pr}\subset gl_{pr+s} for ss any positive integer. The hierarchies obtained admit a description in terms of a p×pp\times p matrix pseudo-differential operator comprising an rr-KdV type positive part and a non-trivial negative part. This system has been investigated previously in the p=1p=1 case as a constrained KP system. In this paper the previous results are considerably extended and a systematic study is presented on the basis of the Drinfeld-Sokolov approach that has the advantage that it leads to local Poisson brackets and makes clear the conformal (W\cal W-algebra) structures related to the KdV type hierarchies. Discrete reductions and modified versions of the extended rr-KdV hierarchies are also discussed.Comment: 60 pages, plain TE

    A One-Parameter Family of Hamiltonian Structures for the KP Hierarchy and a Continuous Deformation of the Nonlinear \W_{\rm KP} Algebra

    Full text link
    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting \W-algebra is a one-parameter deformation of \W_{\rm KP} admitting a central extension for generic values of the parameter, reducing naturally to \W_n for special values of the parameter, and contracting to the centrally extended \W_{1+\infty}, \W_\infty and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to \w_{\rm KP}. The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of \widehat{\W}_\infty which contracts to a new nonlinear algebra of the \W_\infty-type.Comment: 31 pages, compressed uuencoded .dvi file, BONN-HE-92/20, US-FT-7/92, KUL-TF-92/20. [version just replaced was truncated by some mailer

    Universal Drinfeld-Sokolov Reduction and Matrices of Complex Size

    Full text link
    We construct affinization of the algebra glλgl_{\lambda} of ``complex size'' matrices, that contains the algebras gln^\hat{gl_n} for integral values of the parameter. The Drinfeld--Sokolov Hamiltonian reduction of the algebra glλ^\hat{gl_{\lambda}} results in the quadratic Gelfand--Dickey structure on the Poisson--Lie group of all pseudodifferential operators of fractional order. This construction is extended to the simultaneous deformation of orthogonal and simplectic algebras that produces self-adjoint operators, and it has a counterpart for the Toda lattices with fractional number of particles.Comment: 29 pages, no figure

    Quantum and Classical Integrable Systems

    Full text link
    The key concept discussed in these lectures is the relation between the Hamiltonians of a quantum integrable system and the Casimir elements in the underlying hidden symmetry algebra. (In typical applications the latter is either the universal enveloping algebra of an affine Lie algebra, or its q-deformation.) A similar relation also holds in the classical case. We discuss different guises of this very important relation and its implication for the description of the spectrum and the eigenfunctions of the quantum system. Parallels between the classical and the quantum cases are thoroughly discussed.Comment: 59 pages, LaTeX2.09 with AMS symbols. Lectures at the CIMPA Winter School on Nonlinear Systems, Pondicherry, January 199

    Non-Local Matrix Generalizations of W-Algebras

    Full text link
    There is a standard way to define two symplectic (hamiltonian) structures, the first and second Gelfand-Dikii brackets, on the space of ordinary linear differential operators of order mm, L=−dm+U1dm−1+U2dm−2+
+UmL = -d^m + U_1 d^{m-1} + U_2 d^{m-2} + \ldots + U_m. In this paper, I consider in detail the case where the UkU_k are n×nn\times n-matrix-valued functions, with particular emphasis on the (more interesting) second Gelfand-Dikii bracket. Of particular interest is the reduction to the symplectic submanifold U1=0U_1=0. This reduction gives rise to matrix generalizations of (the classical version of) the {\it non-linear} WmW_m-algebras, called Vm,nV_{m,n}-algebras. The non-commutativity of the matrices leads to {\it non-local} terms in these Vm,nV_{m,n}-algebras. I show that these algebras contain a conformal Virasoro subalgebra and that combinations WkW_k of the UkU_k can be formed that are n×nn\times n-matrices of conformally primary fields of spin kk, in analogy with the scalar case n=1n=1. In general however, the Vm,nV_{m,n}-algebras have a much richer structure than the WmW_m-algebras as can be seen on the examples of the {\it non-linear} and {\it non-local} Poisson brackets of any two matrix elements of U2U_2 or W3W_3 which I work out explicitly for all mm and nn. A matrix Miura transformation is derived, mapping these complicated second Gelfand-Dikii brackets of the UkU_k to a set of much simpler Poisson brackets, providing the analogue of the free-field realization of the WmW_m-algebras.Comment: 43 pages, a reference and a remark on the conformal properties for U1≠0U_1\ne 0 adde

    Schwinger Terms and Cohomology of Pseudodifferential Operators

    Get PDF
    We study the cohomology of the Schwinger term arising in second quantization of the class of observables belonging to the restricted general linear algebra. We prove that, for all pseudodifferential operators in 3+1 dimensions of this type, the Schwinger term is equivalent to the ``twisted'' Radul cocycle, a modified version of the Radul cocycle arising in non-commutative differential geometry. In the process we also show how the ordinary Radul cocycle for any pair of pseudodifferential operators in any dimension can be written as the phase space integral of the star commutator of their symbols projected to the appropriate asymptotic component.Comment: 19 pages, plain te

    Higher spin quaternion waves in the Klein-Gordon theory

    Full text link
    Electromagnetic interactions are discussed in the context of the Klein-Gordon fermion equation. The Mott scattering amplitude is derived in leading order perturbation theory and the result of the Dirac theory is reproduced except for an overall factor of sixteen. The discrepancy is not resolved as the study points into another direction. The vertex structures involved in the scattering calculations indicate the relevance of a modified Klein-Gordon equation, which takes into account the number of polarization states of the considered quantum field. In this equation the d'Alembertian is acting on quaternion-like plane waves, which can be generalized to representations of arbitrary spin. The method provides the same relation between mass and spin that has been found previously by Majorana, Gelfand, and Yaglom in infinite spin theories
    • 

    corecore