We study the cohomology of the Schwinger term arising in second quantization
of the class of observables belonging to the restricted general linear algebra.
We prove that, for all pseudodifferential operators in 3+1 dimensions of this
type, the Schwinger term is equivalent to the ``twisted'' Radul cocycle, a
modified version of the Radul cocycle arising in non-commutative differential
geometry. In the process we also show how the ordinary Radul cocycle for any
pair of pseudodifferential operators in any dimension can be written as the
phase space integral of the star commutator of their symbols projected to the
appropriate asymptotic component.Comment: 19 pages, plain te