50 research outputs found

    Nowhere dense graph classes, stability, and the independence property

    Full text link
    A class of graphs is nowhere dense if for every integer r there is a finite upper bound on the size of cliques that occur as (topological) r-minors. We observe that this tameness notion from algorithmic graph theory is essentially the earlier stability theoretic notion of superflatness. For subgraph-closed classes of graphs we prove equivalence to stability and to not having the independence property.Comment: 9 page

    Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm

    Full text link
    Linear rank-width is a linearized variation of rank-width, and it is deeply related to matroid path-width. In this paper, we show that the linear rank-width of every nn-vertex distance-hereditary graph, equivalently a graph of rank-width at most 11, can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. As a corollary, we show that the path-width of every nn-element matroid of branch-width at most 22 can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), provided that the matroid is given by an independent set oracle. To establish this result, we present a characterization of the linear rank-width of distance-hereditary graphs in terms of their canonical split decompositions. This characterization is similar to the known characterization of the path-width of forests given by Ellis, Sudborough, and Turner [The vertex separation and search number of a graph. Inf. Comput., 113(1):50--79, 1994]. However, different from forests, it is non-trivial to relate substructures of the canonical split decomposition of a graph with some substructures of the given graph. We introduce a notion of `limbs' of canonical split decompositions, which correspond to certain vertex-minors of the original graph, for the right characterization.Comment: 28 pages, 3 figures, 2 table. A preliminary version appeared in the proceedings of WG'1

    Tree-width for first order formulae

    Get PDF
    We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This is done by translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable fragment L^k of first order logic. For fixed k, the question whether a given first order formula is equivalent to an L^k formula is undecidable. In contrast, the classes of first order formulae with bounded fotw are fragments of first order logic for which the equivalence is decidable. Our notion of tree-width generalises tree-width of conjunctive queries to arbitrary formulae of first order logic by taking into account the quantifier interaction in a formula. Moreover, it is more powerful than the notion of elimination-width of quantified constraint formulae, defined by Chen and Dalmau (CSL 2005): for quantified constraint formulae, both bounded elimination-width and bounded fotw allow for model checking in polynomial time. We prove that fotw of a quantified constraint formula \phi\ is bounded by the elimination-width of \phi, and we exhibit a class of quantified constraint formulae with bounded fotw, that has unbounded elimination-width. A similar comparison holds for strict tree-width of non-recursive stratified datalog as defined by Flum, Frick, and Grohe (JACM 49, 2002). Finally, we show that fotw has a characterization in terms of a cops and robbers game without monotonicity cost

    On Testability of First-Order Properties in Bounded-Degree Graphs and Connections to Proximity-Oblivious Testing

    Full text link
    We study property testing of properties that are definable in first-order logic (FO) in the bounded-degree graph and relational structure models. We show that any FO property that is defined by a formula with quantifier prefix \exists^*\forall^* is testable (i.e., testable with constant query complexity), while there exists an FO property that is expressible by a formula with quantifier prefix \forall^*\exists^* that is not testable. In the dense graph model, a similar picture is long known (Alon, Fischer, Krivelevich, Szegedy, Combinatorica 2000), despite the very different nature of the two models. In particular, we obtain our lower bound by an FO formula that defines a class of bounded-degree expanders, based on zig-zag products of graphs. We expect this to be of independent interest. We then use our class of FO definable bounded-degree expanders to answer a long-standing open problem for proximity-oblivious testers (POTs). POTs are a class of particularly simple testing algorithms, where a basic test is performed a number of times that may depend on the proximity parameter, but the basic test itself is independent of the proximity parameter. In their seminal work, Goldreich and Ron [STOC 2009; SICOMP 2011] show that the graph properties that are constant-query proximity-oblivious testable in the bounded-degree model are precisely the properties that can be expressed as a generalised subgraph freeness (GSF) property that satisfies the non-propagation condition. It is left open whether the non-propagation condition is necessary. We give a negative answer by showing that our property is a GSF property which is propagating. Hence in particular, our property does not admit a POT. For this result we establish a new connection between FO properties and GSF-local properties via neighbourhood profiles.Comment: Preliminary version of this article appeared in SODA'21 (arXiv:2008.05800) and CCC'21 (arXiv:2105.08490
    corecore