1,044 research outputs found

    Vortex states of a disordered quantum Hall bilayer

    Full text link
    We present and solve a model for the vortex configuration of a disordered quantum Hall bilayer in the limit of strong and smooth disorder. We argue that there is a characteristic disorder strength below which vortices will be rare, and above which they proliferate. We predict that this can be observed tuning the electron density in a given sample. The ground state in the strong-disorder regime can be understood as an emulsion of vortex-antivortex crystals. Its signatures include a suppression of the spatial decay of counterflow currents. We find an increase of at least an order of magnitude in the length scale for this decay compared to a clean system. This provides a possible explanation of the apparent absence of leakage of counterflow currents through interlayer tunneling, even in experiments performed deep in the coherent phase where enhanced interlayer tunneling is observed.Comment: 5 pages, 3 figures. v2 slightly extended to emphasize new length scal

    Baryons with Two Heavy Quarks as Solitons

    Get PDF
    Using the chiral soliton model and heavy quark symmetry we study baryons containing two heavy quarks. If there exists a stable (under strong interactions) meson consisting of two heavy quarks and two light ones, then we find that there always exists a state of this meson bound to a chiral soliton and to a chiral anti-soliton, corresponding to a two heavy quark baryon and a baryon containing two heavy anti-quarks and five light quarks, or a ``heptaquark".Comment: 7 pages and 2 postscript figures appended, LaTex, UCI-TR 94-3

    Operatorial quantization of Born-Infeld Skyrmion model and hidden symmetries

    Get PDF
    The SU(2) collective coordinates expansion of the Born-Infeld\break Skyrmion Lagrangian is performed. The classical Hamiltonian is computed from this special Lagrangian in approximative way: it is derived from the expansion of this non-polynomial Lagrangian up to second-order variable in the collective coordinates. This second-class constrained model is quantized by Dirac Hamiltonian method and symplectic formalism. Although it is not expected to find symmetries on second-class systems, a hidden symmetry is disclosed by formulating the Born-Infeld Skyrmion %model as a gauge theory. To this end we developed a new constraint conversion technique based on the symplectic formalism. Finally, a discussion on the role played by the hidden symmetry on the computation of the energy spectrum is presented.Comment: A new version of hep-th/9901133. To appear in JP

    Decoherence in elastic and polaronic transport via discrete quantum states

    Full text link
    Here we study the effect of decoherence on elastic and polaronic transport via discrete quantum states. The calculations are performed with the help of nonperturbative computational scheme, based on the Green's function theory within the framework of polaron transformation (GFT-PT), where the many-body electron-phonon interaction problem is mapped exactly into a single-electron multi-channel scattering problem. In particular, the influence of dephasing and relaxation processes on the shape of the electrical current and shot noise curves is discussed in detail under the linear and nonlinear transport conditions.Comment: 11 pages, 3 figure

    Vacuum energy in a spherically symmetric background field

    Get PDF
    The vacuum energy of a scalar field in a spherically symmetric background field is considered. It is expressed through the Jost function of the corresponding scattering problem. The renormalization is discussed in detail and performed using the uniform asymptotic expansion of the Jost function. The method is demonstrated in a simple explicit example.Comment: 14 pages, 1 Postscript figur

    Energy levels of the soliton--heavy-meson bound states

    Get PDF
    We investigate the bound states of heavy mesons with finite masses to a classical soliton solution in the Skyrme model. For a given model Lagrangian we solve the equations of motion exactly so that the heavy vector mesons are treated on the same footing as the heavy pseudoscalar mesons. All the energy levels of higher grand spin states as well as the ground state are given over a wide range of the heavy meson masses. We also examine the validity of the approximations used in the literatures. The recoil effect of finite mass soliton is naively estimated.Comment: 24 pages, REVTeX v3.0, 6 figures are available upon request

    Metal-insulator transition in a 2D electron gas: Equivalence of two approaches for determining the critical point

    Full text link
    The critical electron density for the metal-insulator transition in a two-dimensional electron gas can be determined by two distinct methods: (i) a sign change of the temperature derivative of the resistance, and (ii) vanishing activation energy and vanishing nonlinearity of current-voltage characteristics as extrapolated from the insulating side. We find that in zero magnetic field (but not in the presence of a parallel magnetic field), both methods give equivalent results, adding support to the existence of a true zero-field metal-insulator transition.Comment: As publishe
    • 

    corecore