3,003 research outputs found

    Composite Skyrme Model with Vector Mesons

    Full text link
    We study the composite Skyrme model, proposed by Cheung and G\"{u}rsey, introducing vector mesons in a chiral Lagrangian. We calculate the static properties of baryons and compare with results obtained from models without vector mesons.Comment: LaTeX, 9 pages, 3 figures, to be published in Phys. Rev.

    alpha^2 corrections to parapositronium decay: a detailed description

    Full text link
    We present details of our recent calculation of alpha^2 corrections to the parapositronium decay into two photons. These corrections are rather small and our final result for the parapositronium lifetime agrees well with the most recent measurement. Implications for orthopositronium decays are briefly discussed.Comment: 18 pages, late

    Recoil corrections in the hydrogen isoelectronic sequence

    Full text link
    A version of the Bethe-Salpeter equation appropriate for calculating recoil corrections in highly charged hydrogenlike ions is presented. The nucleus is treated as a scalar particle of charge Z, and the electron treated relativistically. The known recoil corrections of order m2/M(Zα)4m^2/M(Z\alpha)^4 are derived in both this formalism and in NRQED

    The Single Photon Annihilation Contributions to the Positronium Hyperfine Splitting to Order meα6m_e\alpha^6

    Get PDF
    The single photon annihilation contributions for the positronium ground state hyperfine splitting are calculated analytically to order meα6m_e\alpha^6 using NRQED. Based on intuitive physical arguments the same result can also be determined by a trivial calculation using results from existing literature. Our result completes the hyperfine splitting calculation to order meα6m_e\alpha^6. We compare the theoretical prediction with the most recent experimental measurement.Comment: 8 pages, latex, two eps figures include

    A Note in the Skyrme Model with Higher Derivative Terms

    Full text link
    Another stabilizer term is used in the classical Hamiltonian of the Skyrme Model that permits in a much simple way the generalization of the higher-order terms in the pion derivative field. Improved numerical results are obtained.Comment: Latex. Figure not include; available upon request. 7 pages, report

    The "recoil" correction of order mα6m \alpha^6 to hyperfine splitting of positronium ground state

    Full text link
    The "recoil" correction of order mα6m \alpha^6 to the hyperfine splitting of positronium ground state was found. The formalism employed is based on the noncovariant perturbation theory in QED. Equation for two-particle component of full (many-body) wave function is used, in which effective Hamiltonian depends on the energy of a system. The effective Hamiltonian is not restricted to the nonrelativistic region, so there is no need in any regularization. To evaluate integrals over loop momenta, they are divided into "hard" and "soft" parts, coming from large and small momenta respectively. Soft contributions were found analytically, and hard ones are evaluated by numerical integration. Some soft terms due to the retardation cancel each other. To calculate the "hard" contributions, a great number of noncovariant graphs is replaced by only a few covariant ones. The hard contribution was found in two ways. The first way is to evaluate contributions of separate graphs, using the Coulomb gauge. The second one is to calculate full hard contribution as a whole using the Feynman gauge. The final result for the "recoil" correction is 0.381(6) m\al^6 and agrees with those of previous papers. Diagram-to-diagram comparison with the revised results of Adkins&Sapirstein was done. All the results agree, so the "recoil" correction is now firmly established. This means a considerable disagreement with the experimental data.Comment: 28 pages, latex including latex figure

    Infra-Red Finite Charge Propagation

    Get PDF
    The Coulomb gauge has a long history and many uses. It is especially useful in bound state applications. An important feature of this gauge is that the matter fields have an infra-red finite propagator in an on-shell renormalisation scheme. This is, however, only the case if the renormalisation point is chosen to be the static point on the mass shell, p = (m, 0, 0, 0). In this letter we show how to extend this key property of the Coulomb gauge to an arbitrary relativistic renormalisation point. This is achieved through the introduction of a new class of gauges of which the Coulomb gauge is a limiting case. A physical explanation for this result is given.Comment: 8 pages, plain TeX, to appear in Modern Physics Letters

    Precision Study of Positronium: Testing Bound State QED Theory

    Full text link
    As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positronium tests compared to other QED experiments.Comment: A talk presented at Workshop on Positronium Physics (ETH Zurich, May 30-31, 2003

    Order \alpha^2 corrections to the decay rate of orthopositronium

    Full text link
    Order \alpha^2 corrections to the decay rate of orthopositronium are calculated in the framework of nonrelativistic QED. The resulting contribution is found to be in significant disagreement with one set of experimental measurements though another experiment is in agreement with theory.Comment: 7 pages, 1 figur
    • 

    corecore