4 research outputs found
Recommended from our members
Feasibility Evaluation and Retrofit Plan for Cold Crucible Induction Melter Deployment in the Defense Waste Processing Facility at Savannah River Site 8118
Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed JHM, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF
The legal labour market and the training needs of women returners in the UnitedKingdom
This article examines a particular instance of the relationship between gender, training provision and the labour market, namely the provision of training for women solicitors wishing to return to the labour market after a career break. The specific empirical material, which is gathered from a sample of women solicitors, both returners and non-returners, in West and North Yorkshire, is explored in the context of demand-side and supply-side explanations of women's position in the labour market. However, we also argue for a perspective which takes account of the culture of the profession and which undermines the assumption of economic rationality underpinning many labour market studies. Similarly, our exploration of the potential of training for easing labour-market re-entry is evaluated within the context of the gendered ethos of the solicitor's profession, as is the discussion of the curriculum design issues in professional women returners' training which arise out of the research