9 research outputs found

    Tuning the Energetic Landscape of Ruddlesden-Popper Perovskite Films for Efficient Solar Cells

    Get PDF
    Ruddlesden-Popper perovskite films deposited with different methods show very diverse phase segregation and composition. When DMSO is used as solvent, the conventional method based on spin-coating and annealing produces very poor devices, whereas the vacuum-assisted method proposed here allows obtaining devices with efficiency up to 14.14%. The conventional method gives rise to a three-dimensional (3D)-like phase on the top of the film but dominant n = 2 phase with large domains (∼40 μm) at the bottom of the film. These n = 2 domains are oriented with their inorganic slabs parallel to the substrate and inhibit the charge transport in the vertical direction. Consequently, severe monomolecular and bimolecular charge recombination occurs in the solar cells. Conversely, the vacuum-assisted method yields films with a 3D-like phase dominant throughout their entire thickness and only a small amount of n ≤ 2 domains of limited dimensions (∼3 μm) at the bottom, which facilitate charge transport and reduce charge recombination

    Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitution

    Get PDF
    Whereas their photophysics exhibits an intricate interplay of carriers with the lattice, most reports have so far relied on single compound studies. With the exception of variations of the organic spacer cations, the effect of constituent substitution on the photophysics and the nature of emitting species, in particular, has remained largely under-explored. Here PEA2_2PbBr4_4, PEA2_2PbI4_4, and PEA2_2SnI4_4 are studied through a variety of optical spectroscopy techniques to reveal a complex set of excitonic transitions at low temperature. We attribute the emergence of weak high energy features to a vibronic progression breaking Kasha's rule and highlight that the responsible phonons cannot be accessed through simple Raman spectroscopy. Bright peaks at lower energy are due to two distinct excitons, of which the upper is a convolution of a bright exciton and a localised state, whereas the lower is attributed to shallow defects. Our study offers deeper insights into the photophysics of two-dimensional perovskites through compositional substitution and highlights critical limits to the communities' current understanding of the photophysics of these compounds

    N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    Get PDF
    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices using the n-type polymers EELs did not exceed substantially that of the devices using PC60BM (about 11%), while a substantial improvement in their ambient stability (87% of the initial value after 270 minutes) compared to that using PC60BM (3.5% of the initial value after 270 minutes) was detected

    Impact of the Hole Transport Layer on the Charge Extraction of Ruddlesden-Popper Perovskite Solar Cells

    No full text
    Recent works demonstrate that polyelectrolytes as a hole transport layer (HTL) offers superior performance in Ruddlesden-Popper perovskite solar cells (RPPSCs) compared to poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The factors contributing to such improvement need to be systematically investigated. To achieve this, we have systematically investigated how the two HTLs affect the morphology, crystallinity, and orientation of the Ruddlesden-Popper perovskite (RPP) films as well as the charge extraction of the RPPSCs. PEDOT:PSS as a HTL leads to RPP films of low crystallinity and with a number of large pinholes. These factors lead to poor charge carrier extraction and significant charge recombination in the RPPSCs. Conversely, a PCP-Na HTL gives rise to highly crystalline and pinhole-free RPPSC films. Moreover, a PCP-Na HTL provides a better energy alignment at the perovskite/HTL interface because of its higher work function compared to PEDOT:PSS. Consequently, devices using PCP-Na as HTLs are more efficient in extracting charge carriers

    Current Development toward Commercialization of Metal‐Halide Perovskite Photovoltaics

    No full text
    corecore