28 research outputs found

    Antibody response after vaccination against SARS-CoV-2 in adults with hematological malignancies: a systematic review and meta-analysis

    Get PDF
    Vaccines against SARS-CoV-2 have shown remarkable efficacy and thus constitute an important preventive option against coronavirus disease 2019 (COVID-19), especially in fragile patients. We aimed to systematically analyze the outcomes of patients with hematological malignancies who received vaccination and to identify specific groups with differences in outcomes. The primary end point was antibody response after full vaccination (2 doses of mRNA or one dose of vectorbased vaccines). We identified 49 studies comprising 11,086 individuals. Overall risk of bias was low. The pooled response for hematological malignancies was 64% (95% confidence interval [CI]: 59-69; I²=93%) versus 96% (95% CI: 92-97; I²=44%) for solid cancer and 98% (95% CI: 96-99; I²=55%) for healthy controls (P<0.001). Outcome was different across hematological malignancies (P<0.001). The pooled response was 50% (95% CI: 43-57; I²=84%) for chronic lymphocytic leukemia, 76% (95% CI: 67-83; I²=92%) for multiple myeloma, 83% (95% CI: 69-91; I²=85%) for myeloproliferative neoplasms, 91% (95% CI: 82-96; I²=12%) for Hodgkin lymphoma, and 58% (95% CI: 44-70; I²=84%) for aggressive and 61% (95% CI: 48-72; I²=85%) for indolent non-Hodgkin lymphoma. The pooled response for allogeneic and autologous hematopoietic cell transplantation was 82% and 83%, respectively. Being in remission and prior COVID-19 showed significantly higher responses. Low pooled response was identified for active treatment (35%), anti-CD20 therapy ≤1 year (15%), Bruton kinase inhibition (23%), venetoclax (26%), ruxolitinib (42%), and chimeric antigen receptor T-cell therapy (42%). Studies on timing, value of boosters, and long-term efficacy are needed. This study is registered with PROSPERO (clinicaltrials gov. Identifier: CRD42021279051)

    Clinical features of hepatitis E infections in patients with hematologic disorders

    Get PDF
    Hepatitis E virus is increasingly being reported to cause chronic infection in immunocompromised patients. However, less is known about patients with an underlying hematologic disease. In particular, the impact of hepatitis E infection on oncological therapy has been poorly described. In this retrospective single-center study, we analyzed 35 hematologic patients with hepatitis E, including 20 patients under active oncological treatment and 15 patients who were in the posttreatment follow-up or under active surveillance. The primary aim was to describe the clinical courses with particular focus on any hepatitis E-related therapy modifications of cancer-directed therapy. In the majority (60%) of patients who were under active oncological treatment, hepatitis E-related therapy modifications were made, and 25% of deaths were due to progression of the hematologic disease. In patients receiving concomitant oncological treatment, no hepatitis Erelated deaths occurred. In contrast, two patients in the follow-up group died from hepatitis E-associated acute-onchronic liver failure. Chronic hepatitis E was observed in 34% of all cases and 43% received ribavirin therapy; of those, 27% achieved a sustained virological response. CD20-directed therapy was the only independent risk factor for developing chronic hepatitis E. We conclude that CD20-directed treatment at any time point is a risk factor for developing chronic hepatitis E. Nevertheless, since mortality from the progression of hematologic disease was higher than hepatitis E-related mortality, we suggest careful case-by-case decisions on modifications of cancer treatment. Patients in the posttreatment follow-up phase may also suffer from severe courses and hepatitis E chronicity occurs as frequently as in patients undergoing active therapy

    A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films

    No full text
    In recent years, there has been a growing attempt to manipulate various properties of biodegradable materials to use them as alternatives to their synthetic plastic counterparts. Alginate is a polysaccharide extracted from seaweed or soil bacteria that is considered one of the most promising materials for numerous applications. However, alginate potential for various applications is relatively limited due to brittleness, poor mechanical properties, scaling-up difficulties, and high water vapor permeability (WVP). Choosing an appropriate plasticizer can alleviate the situation by providing higher flexibility, workability, processability, and in some cases, higher hydrophobicity. This review paper discusses the main results and developments regarding the effects of various plasticizers on the properties of alginate-based films during the last decades. The plasticizers used for plasticizing alginate were classified into different categories, and their behavior under different concentrations and conditions was studied. Moreover, the drawback effects of plasticizers on the mechanical properties and WVP of the films are discussed. Finally, the role of plasticizers in the improved processing of alginate and the lack of knowledge on some aspects of plasticized alginate films is clarified, and accordingly, some recommendations for more classical studies of the plasticized alginate films in the future are offered

    Treatment of Malignant Pheochromocytoma

    No full text

    An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass

    No full text
    Lignocellulosic biomass is both low cost and abundant, and unlike energy crops, can escape associated ethical dilemmas such as arable land use and food security issues. However, their usage as raw material in a biorefinery implies an inherent upstream pretreatment step to access compounds of interest derived from lignocellulosic biomass. Importantly, the efficiency of this step is determinant for the downstream processes, and while many pretreatment methods have been explored, extrusion is both a very flexible and promising technology. Extrusion is well-known in both the polymer and pharmaceutical industries and has been used since the 18th century. However, as a pretreatment method for lignocellulosic biomass, extrusion is relatively new. The first use for this purpose dates back to the 1990s. Extrusion enjoys a high degree of flexibility due to the many available parameters, but an understanding of extrusion requires a knowledge of these parameters and the different relationships between them. In this paper, we present a concise overview of lignocellulosic biomass extrusion by reviewing key extrusion parameters and their associated extruder design components and operating conditions

    An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass

    No full text
    Lignocellulosic biomass is both low cost and abundant, and unlike energy crops, can escape associated ethical dilemmas such as arable land use and food security issues. However, their usage as raw material in a biorefinery implies an inherent upstream pretreatment step to access compounds of interest derived from lignocellulosic biomass. Importantly, the efficiency of this step is determinant for the downstream processes, and while many pretreatment methods have been explored, extrusion is both a very flexible and promising technology. Extrusion is well-known in both the polymer and pharmaceutical industries and has been used since the 18th century. However, as a pretreatment method for lignocellulosic biomass, extrusion is relatively new. The first use for this purpose dates back to the 1990s. Extrusion enjoys a high degree of flexibility due to the many available parameters, but an understanding of extrusion requires a knowledge of these parameters and the different relationships between them. In this paper, we present a concise overview of lignocellulosic biomass extrusion by reviewing key extrusion parameters and their associated extruder design components and operating conditions

    Les technologies papetières appliquées à la production de microalgues

    No full text
    Affiche présentée dans le cadre du Colloque de l'ARC, «La recherche collégiale et son milieu : enracinement, déploiement et interdépendance», dans le cadre du 83e Congrès de l'Acfas, Université du Québec à Rimouski (UQAR), Rimouski, le 27 mai 2015.De nombreuses entreprises sont à la recherche d'alternatives durables à la consommation de ressources fossiles. Dans un projet de cohabitation en cours au Québec, nous utilisons les eaux usées d'une aluminerie pour la production mixotrophique de biomasse par un consortium algues-bactéries indigène afin d'obtenir des biocarburants et des bioproduits. RT-algae, un procédé unique de culture et de conversion de microalgues en biocarburants et bioproduits, a été choisi pour ce projet afin de relever le défi de la réduction des coûts de production. Il fait intervenir des technologies papetières pour assécher partiellement la biomasse avant l'étape de conversion en biocarburant. Le but du projet était d'étudier des technologies papetières et de développer un procédé pour assécher la biomasse algale jusqu'au taux de siccité requis. D'abord, avec un équipement de laboratoire servant à fabriquer des feuilles de papier (formette dynamique), nous avons déterminé la concentration de floculant requise et évalué la disposition des fibres. Trois concentrations de floculants ont été testées ainsi que quatre types de fibres servant de précouche sur la toile. Ces conditions ont ensuite été appliquées sur un appareil de mesure de drainage (Britt dynamic drainage jar) afin de simuler la section humide d'une machine à papier (Fourdrinier). Les résultats de l'étude seront présentés et discutés

    Valorisation of Cranberry Residues through Pyrolysis and Membrane Filtration for the Production of Value-Added Agricultural Products

    No full text
    Pyrolysis is a thermochemical conversion process producing biochar, gas, and bio-oil at high temperatures in an oxygen-free environment. Specific pyrolysis conditions enable a significant production of the aqueous phase of bio-oil, commonly known as wood vinegar. Wood vinegar contains organic compounds such as acetic acid and phenols derived from bio-oil. These compounds have herbicidal properties against weeds and biostimulant properties for plant growth. This study reveals the potential for efficient management of cranberry residues consisting of stems and leaves by producing wood vinegar through pyrolysis at 475 °C with a humidity level of 20%. Membrane separation of wood vinegar, using nanofiltration (NF) and reverse osmosis (RO) membranes, yielded phenols in the retentate and acetic acid in the permeate with respective yields of 44.7% with NF membrane and 45% with RO membrane. Biostimulation tests using 2% of the retentate showed significant germination rates for basil, sage, and parsley plants. Additionally, using 40 mL of the wood vinegar permeate (30 mL injected at the base and 10 mL sprayed on the leaves) resulted in leaf damage, measured by conductivity (leakage of electrolytes released by the leaves), of 62.3% and 20.5% respectively for quack grass and white clover, two weeds found in cranberry production
    corecore