119 research outputs found

    High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets

    Get PDF
    The ability to encapsulate linear nanoparticle (NP) chains in scrolled nanosheets is an important advance in the formation of nanocomposites.These nanopeapods (NPPs) exhibit interesting properties that may not be achieved by individual entities. Consequently, to fully exploit the potential of NPPs, the fabrication of NPPs must focus on producing composites with unique combinations of morphologically uniform nanomaterials. Various methods can produce NPPs, but expanding these methods to a wide variety of material combinations can be difficult. Recent work in our group has resulted in the in situ formation of peapod-like structures based on chains of cobalt NPs. Building on this initial success, a more versatile approach has been developed that allows for the capture of a series of preformed NPs in NPP composites. In the following chapters, various synthetic approaches for NPPs of various material combinations will be presented and the key roles of various reaction parameters will be discussed. Also, uniform hexaniobate nanoscrolls were fabricated via a solvothermal method induced by heating up a mixture of TBAOH, hexaniobate crystallites, and oleylamine in toluene. The interlayer spacing of the nanoscrolls was easily tuned by varying the relative amount and chain lengths of the primary alkylamines. To fabricate NPPs, as-synthesized NPs were treated with hexaniobate crystallite in organic mixtures via solvothermal method. During solvothermal treatment, exfoliated hexaniobate nanosheets scroll around highly ordered chains of NPs to produce the target NPP structures in high yield. Reaction mixtures were held at an aging temperature for a few hours to fabricate various new NPPs (Fe3O4@hexaniobate, Ag@hexaniobate, Au@hexaniobate, Au-Fe3O4@hexaniobate, TiO2@hexaniobate, CdS@hexaniobate, CdSe@hexaniobate, and ZnS@hexaniobate). This versatile method was first developed for the fabrication of magnetic peapod nanocomposites with preformed nanoparticles (NPs). This approach is effectively demonstrated on a series of ferrite NPs (≤ 14 nm) where Fe3O4@hexaniobate NPPs are rapidly (~ 6 h) generated in high yield. When NP samples with different sizes are reacted, clear evidence for size selectivity is seen. Magnetic dipolar interactions between ferrite NPs within the Fe3O4@hexaniobate samples leads to a significant rise in coercivity, increasing almost four-fold relative to free particles. Other magnetic ferrites NPPs, MFe2O4@hexaniobate (M = Mn, Co, Ni), can also be prepared. This synthetic approach to nanopeapods is quite versatile and should be readily extendable to other, non-ferrite NPs or NP combinations so that cooperative properties can be exploited while the integrity of the NP assemblies is maintained. Further, this approach demonstrated selectivity by encapsulating NPs according to their size. The use of polydispersed NP systems is also possible and in this case, evidence for size and shape selectivity was observed. This behavior is significant in that it could be exploited in the purification of inhomogeneous NP samples. Other composite materials containing silver and gold NPs are accessible. Partially filled Fe3O4@hexaniobate NPPs were used as templates for the in situ growth of gold to produce the bi-functional Au- Fe3O4@hexaniobate NPPs. Encapsulation of Ag and Au NP chains with a hexaniobate nanoscroll was shifted the surface plasmon resonance to higher wavelengths. In these composites NPs can be incorporated to form NPP structures, decorated on nanosheets before scrolling, or attached to the surfaces of the nanoscrolls. The importance of this advancement is the promise it holds for the design and assembly of active nanocomposites. One can create important combinations of nanomaterials for potential applications in a variety of areas including catalysis, solar conversion, thermoelectrics, and multiferroics

    SIMULTANEOUS DETERMINATION OF ARTESUNATE AND AMODIAQUINE IN HUMAN PLASMA USING LC-MS/MS AND ITS APPLICATION TO A PHARMACOKINETIC STUDY

    Get PDF
    Objective: The objective of this research was to develop a simple, rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of artesunate and amodiaquine in human plasma.Methods: An analytical method based on LC-MS/MS has been developed and validated for the simultaneous determination of artesunate and amodiaquine in human plasma. Isotope-labeled compounds are used as internal standards for the quantification of these drugs. Analytes were extracted from the plasma using solid phase extraction (SPE) technique and chromatographed on a C8 column using an isocratic mobile phase composed of 0.1% ammonia solution and methanol (10:90, v/v). The mobile phase was pumped at a flow rate of 1.00 ml/min. A total of five analytical batches were generated for the calculation of intra-day and inter-day precision and accuracy during the entire course of validation.Results: The assay exhibits excellent linearity in the concentration range of 3.07–305.29 ng/ml for artesunate and 0.30–30.01 ng/ml for amodiaquine. Intra-day and inter-day precision and accuracy results are well within the acceptance limits. All the stability experiments were conducted in plasma samples and in neat samples are complying with the recent US FDA and EMEA guidelines.Conclusion: The proposed LC–MS/MS assay method is simple, rapid and sensitive enough for the simultaneous determination of artesunate and amodiaquine in human plasma. This method was successfully used to quantitate the in-vivo plasma concentrations obtained from a pharmacokinetic study and the results were validated by conducting incurred samples reanalysis (ISR).Â

    Optimal Capacitor Placement - A Bibliometric Survey

    Get PDF
    In this paper, Bibliometric survey has been carried out on Optimal Capacitor Placement from 1981 to 2021. Scopus database has been used for the analysis. There were total 909 documents found on the topic of Optimal Capacitor placement. The statistical analysis is carried out source-wise, year-wise, area-wise, Country-wise, University wise, author-wise, and based on funding agency. Network analysis is also carried out based on Co-authorship, Co-occurrence, Citation Analysis and Bibliographic coupling. Results are presented. During 2016, there were 77 documents published which is the highest. International Journal of Electrical Power and Energy Systems of Elsevier has published 37 documents during the period of study which is highest under the category of sources. VOSviewer 1.6.16 is the software that is used for statistical analysis and network analysis on the database. It provides a very effective way to analyze the co-authorship, co-occurrences, citations and bibliometric couplings etc. The source for all Tables and figures is www.scopus.com, The data is assessed on 6th June, 2021

    Synthesis and Piezoelectric Response of Cubic and Spherical LiNbO3 Nanocrystals

    Get PDF
    Methods have been developed for the shape-selective synthesis of ferroelectric LiNbO3 nanoparticles. Decomposition of the single-source precursor, LiNb(O-Et)6, in the absence of surfactants, can reproducibly lead to either cube- or sphere-like nanoparticles. X-Ray diffraction shows that the LiNbO3 nanoparticles are rhombohedral (R3c). Sample properties were examined by piezoresponse force microscopy (PFM) and Raman where both sets of nanoparticles exhibit ferroelectricity. The longitudinal piezoelectric coefficients, d33, varied with shape where the largest value was exhibited in the nanocubes (17 pm V21 for the cubes versus 12 pm V21 for spheres)

    High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets

    No full text
    The ability to encapsulate linear nanoparticle (NP) chains in scrolled nanosheets is an important advance in the formation of nanocomposites.These nanopeapods (NPPs) exhibit interesting properties that may not be achieved by individual entities. Consequently, to fully exploit the potential of NPPs, the fabrication of NPPs must focus on producing composites with unique combinations of morphologically uniform nanomaterials. Various methods can produce NPPs, but expanding these methods to a wide variety of material combinations can be difficult. Recent work in our group has resulted in the in situ formation of peapod-like structures based on chains of cobalt NPs. Building on this initial success, a more versatile approach has been developed that allows for the capture of a series of preformed NPs in NPP composites. In the following chapters, various synthetic approaches for NPPs of various material combinations will be presented and the key roles of various reaction parameters will be discussed. Also, uniform hexaniobate nanoscrolls were fabricated via a solvothermal method induced by heating up a mixture of TBAOH, hexaniobate crystallites, and oleylamine in toluene. The interlayer spacing of the nanoscrolls was easily tuned by varying the relative amount and chain lengths of the primary alkylamines. To fabricate NPPs, as-synthesized NPs were treated with hexaniobate crystallite in organic mixtures via solvothermal method. During solvothermal treatment, exfoliated hexaniobate nanosheets scroll around highly ordered chains of NPs to produce the target NPP structures in high yield. Reaction mixtures were held at an aging temperature for a few hours to fabricate various new NPPs (Fe3O4@hexaniobate, Ag@hexaniobate, Au@hexaniobate, Au-Fe3O4@hexaniobate, TiO2@hexaniobate, CdS@hexaniobate, CdSe@hexaniobate, and ZnS@hexaniobate). This versatile method was first developed for the fabrication of magnetic peapod nanocomposites with preformed nanoparticles (NPs). This approach is effectively demonstrated on a series of ferrite NPs (≤ 14 nm) where Fe3O4@hexaniobate NPPs are rapidly (~ 6 h) generated in high yield. When NP samples with different sizes are reacted, clear evidence for size selectivity is seen. Magnetic dipolar interactions between ferrite NPs within the Fe3O4@hexaniobate samples leads to a significant rise in coercivity, increasing almost four-fold relative to free particles. Other magnetic ferrites NPPs, MFe2O4@hexaniobate (M = Mn, Co, Ni), can also be prepared. This synthetic approach to nanopeapods is quite versatile and should be readily extendable to other, non-ferrite NPs or NP combinations so that cooperative properties can be exploited while the integrity of the NP assemblies is maintained. Further, this approach demonstrated selectivity by encapsulating NPs according to their size. The use of polydispersed NP systems is also possible and in this case, evidence for size and shape selectivity was observed. This behavior is significant in that it could be exploited in the purification of inhomogeneous NP samples. Other composite materials containing silver and gold NPs are accessible. Partially filled Fe3O4@hexaniobate NPPs were used as templates for the in situ growth of gold to produce the bi-functional Au- Fe3O4@hexaniobate NPPs. Encapsulation of Ag and Au NP chains with a hexaniobate nanoscroll was shifted the surface plasmon resonance to higher wavelengths. In these composites NPs can be incorporated to form NPP structures, decorated on nanosheets before scrolling, or attached to the surfaces of the nanoscrolls. The importance of this advancement is the promise it holds for the design and assembly of active nanocomposites. One can create important combinations of nanomaterials for potential applications in a variety of areas including catalysis, solar conversion, thermoelectrics, and multiferroics
    • …
    corecore