9 research outputs found

    Weight change and sulfonylurea therapy are related to 3 year change in microvascular function in people with type 2 diabetes

    Get PDF
    Aims/hypothesis: Although cardiovascular disease is the biggest cause of death in people with diabetes, microvascular complications have a significant impact on quality of life and financial burden of the disease. Little is known about the progression of microvascular dysfunction in the early stages of type 2 diabetes before the occurrence of clinically apparent complications. We aimed to explore the determinants of endothelial-dependent and -independent microvascular function progression over a 3 year period, in people with and without both diabetes and few clinical microvascular complications. Methods: Demographics were collected in 154 participants with type 2 diabetes and in a further 99 participants without type 2 diabetes. Skin microvascular endothelium-dependent response to iontophoresis of acetylcholine and endothelium-independent responses to sodium nitroprusside were measured using laser Doppler fluximetry. All assessments were repeated 3 years later. Results: People with type 2 diabetes had impaired endothelial-dependent microvascular response compared with those without (AUC 93.9 [95% CI 88.1, 99.4] vs 111.9 [102.3, 121.4] arbitrary units [AU] × min, p < 0.001, for those with vs without diabetes, respectively). Similarly, endothelial-independent responses were attenuated in those with diabetes (63.2 [59.2, 67.2] vs 75.1 [67.8, 82.4] AU × min, respectively, p = 0.002). Mean microvascular function declined over 3 years in both groups to a similar degree (pinteraction 0.74 for response to acetylcholine and 0.69 for response to sodium nitroprusside). In those with diabetes, use of sulfonylurea was associated with greater decline (p = 0.022 after adjustment for co-prescriptions, change in HbA1c and weight), whereas improving glycaemic control was associated with less decline of endothelial-dependent microvascular function (p = 0.03). Otherwise, the determinants of microvascular decline were similar in those with and without diabetes. The principal determinant of change in microvascular function in the whole population was weight change over 3 years, such that those that lost ≥5% weight had very little decline in either endothelial-dependent or -independent function compared with those that were weight stable, whereas those who gained weight had a greater decline in function (change in endothelial-dependent function was 1.2 [95% CI -13.2, 15.7] AU × min in those who lost weight; -15.8 [-10.5, -21.0] AU × min in those with stable weight; and -37.8 [-19.4, -56.2] AU × min in those with weight gain; ptrend < 0.001). This association of weight change with change in endothelial function was driven by people with diabetes; in people without diabetes, the relationship was nonsignificant. Conclusions/interpretation: Over 3 years, physiological change in weight was the greatest predictor of change in microvascular function.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This work was supported by the Innovative Medicines Initiative (the SUMMIT consortium, IMI-2008/115006).published version, accepted version (12 month embargo

    Cerebral small vessel disease, systemic vascular characteristics and potential therapeutic targets

    Get PDF
    INTRODUCTION: Cerebral small vessel disease (SVD) is prevalent in the elderly population and is associated with increased risk of dementia, stroke and disability. Currently there are no clear targets or strategies for the treatment of cerebral SVD. We set out to identify modifiable vascular treatment targets. PATIENTS AND METHODS: 112 participants with and without a history of CVD underwent macrovascular, microvascular and endothelial function tests and an MRI head scan. RESULTS: Increased carotid intima media thickness and carotid-femoral pulse wave velocity were associated with cerebral WMH (β=1·1 p=0·001 and β=1·66, p<0·0001 respectively). Adjusted cerebral resistance index (p=0·03) and brachial flow mediated dilation time to peak (p=0·001) were associated with the severity of cerebral WMH independent of age and sex. Post occlusive reactive hyperaemia time as a measure of microvascular reactivity was associated with WMH after adjustment for age and sex (p=0·03). Ankle Brachial Pressure Index and urinary albumin excretion rate predicted the severity of cerebral WMH (p=0·02 and 0·01 respectively). Age and hypertension were the most important risk factors for WMH severity (p< 0·0001). DISCUSSION: In addition to hypertension, microalbuminuria, arterial stiffness, vascular reactivity and cerebrovascular resistance could be potential treatment targets to halt the development or progression of cerebral SVD.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Published versio

    SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice

    No full text
    Abstract Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob−/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob−/− untreated and ob/ob−/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure

    Echogenicity of the Common Carotid Artery Intima-Media Complex in Stroke.

    Get PDF
    The grey-scale median of the common carotid artery intima-media complex (IM-GSM) characterizes arterial wall composition, and a low IM-GSM is associated with increased cardiovascular mortality in the elderly. We aimed to determine differences in the IM-GSM between a cohort with cerebrovascular disease and a healthy cohort. Eighty-two healthy individuals (control group: 63.2 ± 8.7 y) and 96 patients with either stroke or transient ischemic attacks (CRVD group: 68.6 ± 9.8 y) were studied. Common carotid artery intima-media thickness and IM-GSM obtained by ultrasound were analyzed using semi-automated edge-detection software. The IM-GSM was significantly lower in the CRVD group than in the control group (106 ± 24 vs. 124 ± 27 au, p < 0.001). The IM-GSM was similar for the infarct and non-infarct sides in CRVD. In the pooled cohort of all participants, the lower the quartile of IM-GSM, the greater were the carotid artery intima-media thickness and carotid artery remodeling. These results suggest the presence of an altered atherosclerotic phenotype in the intima-media complex of CRVD patients that can be detected by ultrasound

    Cardiometabolic Syndrome: An Update on Available Mouse Models

    No full text
    corecore