246 research outputs found

    Sub-grid modelling for two-dimensional turbulence using neural networks

    Get PDF
    In this investigation, a data-driven turbulence closure framework is introduced and deployed for the sub-grid modelling of Kraichnan turbulence. The novelty of the proposed method lies in the fact that snapshots from high-fidelity numerical data are used to inform artificial neural networks for predicting the turbulence source term through localized grid-resolved information. In particular, our proposed methodology successfully establishes a map between inputs given by stencils of the vorticity and the streamfunction along with information from two well-known eddy-viscosity kernels. Through this we predict the sub-grid vorticity forcing in a temporally and spatially dynamic fashion. Our study is both a-priori and a-posteriori in nature. In the former, we present an extensive hyper-parameter optimization analysis in addition to learning quantification through probability density function based validation of sub-grid predictions. In the latter, we analyse the performance of our framework for flow evolution in a classical decaying two-dimensional turbulence test case in the presence of errors related to temporal and spatial discretization. Statistical assessments in the form of angle-averaged kinetic energy spectra demonstrate the promise of the proposed methodology for sub-grid quantity inference. In addition, it is also observed that some measure of a-posteriori error must be considered during optimal model selection for greater accuracy. The results in this article thus represent a promising development in the formalization of a framework for generation of heuristic-free turbulence closures from data

    Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning

    Full text link
    In this paper, we put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements. We build on the fact that in a realistic application, there are uncertainties in initial conditions, boundary conditions, model parameters, and/or field measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities due to the modal truncation, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM-Nudge approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate the idea with the viscous Burgers problem, as a benchmark test bed with quadratic nonlinearity and Laplacian dissipation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-Nudge behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity. This first step in our assessment of the proposed model shows that the LSTM nudging could represent a viable realtime predictive tool in emerging digital twin systems

    Machine learning based investigation of influence of weather on transport mobility.

    Get PDF
    Current work involves data-driven analysis of travel mobility. For this purpose, traffic counts of cars and bikes at various traffic routes along With the associated weather have been collected in Oslo, Norway. Amongst the 6 machine learning algorithms compared (linear regression, random forest, decision tree, gradient boost, support vector machine and artificial neural network), the random forest model is seen to perform the best with an accuracy score of around 0.96. The results indicate : a) bike traffic is more sensitive to weather than the car traffic, b) bike traffic counts showing a stronger bimodal distribution with the hour of the day for week days than the car traffic counts, thus suggesting a wider car-usage outside the bimodal peak-times. c) Monthly bike traffic counts is influenced by the weather, while the monthly car counts is influenced by the vacation periods. Oppdragsgiver: TØIpublishedVersio

    An environmental disturbance observer framework for autonomous surface vessels

    Get PDF
    This paper proposes a robust disturbance observer framework for maritime autonomous surface vessels considering model and measurement uncertainties. The core contribution lies in a nonlinear disturbance observer, reconstructing the forces on a vessel impacted by the environment. For this purpose, mappings are found leading to synchronized global exponentially stable error dynamics. With the stability theory of Lyapunov, it is proven that the error converges exponentially into a ball, even if the disturbances are highly dynamic. Since measurements are affected by noise and physical models can be erroneous, an unscented Kalman filter (UKF) is used to generate more reliable state estimations. In addition, a noise estimator is introduced, which approximates the noise strength. Depending on the severity of the measurement noise, the observed disturbances are filtered through a cascaded structure consisting of a weighted moving average (WMA) filter, a UKF, and the proposed disturbance observer. To investigate the capability of this observer framework, the environmental disturbances are simulated dynamically under consideration of different model and measurement uncertainties. It can be seen that the observer framework can approximate dynamical forces on a vessel impacted by the environment despite using a low measurement sampling rate, an erroneous model, and noisy measurements.publishedVersio

    Multi-label Class-imbalanced Action Recognition in Hockey Videos via 3D Convolutional Neural Networks

    Get PDF
    Automatic analysis of the video is one of most complex problems in the fields of computer vision and machine learning. A significant part of this research deals with (human) activity recognition (HAR) since humans, and the activities that they perform, generate most of the video semantics. Video-based HAR has applications in various domains, but one of the most important and challenging is HAR in sports videos. Some of the major issues include high inter- and intra-class variations, large class imbalance, the presence of both group actions and single player actions, and recognizing simultaneous actions, i.e., the multi-label learning problem. Keeping in mind these challenges and the recent success of CNNs in solving various computer vision problems, in this work, we implement a 3D CNN based multi-label deep HAR system for multi-label class-imbalanced action recognition in hockey videos. We test our system for two different scenarios: an ensemble of kk binary networks vs. a single kk-output network, on a publicly available dataset. We also compare our results with the system that was originally designed for the chosen dataset. Experimental results show that the proposed approach performs better than the existing solution.Comment: Accepted to IEEE/ACIS SNPD 2018, 6 pages, 3 figure

    Multiscale modelling of urban climate

    Get PDF
    Climate has a direct impact on cities' energy flows due to the space conditioning (heating, cooling) needs of the buildings accommodated. This impact may be reinforced due to climate change and to the (so called) urban heat island effect. The corresponding changes in energy demands alter greenhouse gas emissions so that there is a feedback loop. To be able to simulate cities' metabolism with reasonable accuracy it is thus important to have good models of the urban climate. But this is complicated by the diverse scales involved. The climate in a city, for example, will be affected not only by the buildings within the urban canopy (the size of a few meters) but also by large topographical features such as nearby water bodies or mountains (the size of a few kilometers). Unfortunately it is not possible to satisfactorily resolve all of these scales in a computationally tractable way using a single model. It is however possible to tackle this problem by coupling different models which each target different climatic scales. For example a macro model with a grid size of 200 – 300 km may be coupled with a meso model having a grid of 0.5-1 km, which itself may be coupled with a micro model of a grid size of 5-10 meters. Here we describe one such approach. Firstly, freely available results from a macro-model are input to a meso-model at a slightly larger scale than that of our city. This meso-model is then run as a pre-process to interpolate the macro-scale results at progressively finer scales until the boundary conditions surrounding our city are resolved at a compatible scale. The meso-model may then be run in the normal way. In the rural context this may simply involve associating topography and average land use data with each cell, the former affecting temperature as pressure changes with height the latter affecting temperature due to evapo(transpir)ation from water bodies or vegetated surfaces. In the urban context however, it is important to account for the energy and momentum exchanges between our built surfaces and the adjacent air, which implies some representation of 3D geometry. For this we use a new urban canopy model in which the velocity, temperature and scalar profiles are parameterized as functions of built densities, street orientation and the dimensions of urban geometric typologies. These quantities are then used to estimate the corresponding sources and sinks of the momentum and energy equations. Even at the micro-scale the use of conventional computational fluid dynamics modeling is unattractive because of the time involved in grid generation / tuning and the definition of boundary conditions. Furthermore, even the simplest geometry may require hundreds of millions of grid cells for a domain corresponding to a single meso-model cell, particularly if unstructured grids are used. To overcome this problem we describe a new approach based on immersed boundaries in which the flow around any complex geometry can be computed using a simple Cartesian grid, so that users benefit from both improved productivity and accuracy. Thus, a completely coupled macro, meso and micro model can be used to predict the temperature, wind and pressure field in a city taking into account not only the complex geometries of its built fabric but also the scales which are bigger than the city itself. In this thesis we describe for the first time the theoretical basis of this new multiscale modeling approach together with examples of its application

    Variational multiscale reinforcement learning for discovering reduced order closure models of nonlinear spatiotemporal transport systems

    Get PDF
    A central challenge in the computational modeling and simulation of a multitude of science applications is to achieve robust and accurate closures for their coarse-grained representations due to underlying highly nonlinear multiscale interactions. These closure models are common in many nonlinear spatiotemporal systems to account for losses due to reduced order representations, including many transport phenomena in fluids. Previous data-driven closure modeling efforts have mostly focused on supervised learning approaches using high fidelity simulation data. On the other hand, reinforcement learning (RL) is a powerful yet relatively uncharted method in spatiotemporally extended systems. In this study, we put forth a modular dynamic closure modeling and discovery framework to stabilize the Galerkin projection based reduced order models that may arise in many nonlinear spatiotemporal dynamical systems with quadratic nonlinearity. However, a key element in creating a robust RL agent is to introduce a feasible reward function, which can be constituted of any difference metrics between the RL model and high fidelity simulation data. First, we introduce a multi-modal RL to discover mode-dependant closure policies that utilize the high fidelity data in rewarding our RL agent. We then formulate a variational multiscale RL (VMRL) approach to discover closure models without requiring access to the high fidelity data in designing the reward function. Specifically, our chief innovation is to leverage variational multiscale formalism to quantify the difference between modal interactions in Galerkin systems. Our results in simulating the viscous Burgers equation indicate that the proposed VMRL method leads to robust and accurate closure parameterizations, and it may potentially be used to discover scale-aware closure models for complex dynamical systems.publishedVersio

    Not So Robust After All: Evaluating the Robustness of Deep Neural Networks to Unseen Adversarial Attacks

    Full text link
    Deep neural networks (DNNs) have gained prominence in various applications, such as classification, recognition, and prediction, prompting increased scrutiny of their properties. A fundamental attribute of traditional DNNs is their vulnerability to modifications in input data, which has resulted in the investigation of adversarial attacks. These attacks manipulate the data in order to mislead a DNN. This study aims to challenge the efficacy and generalization of contemporary defense mechanisms against adversarial attacks. Specifically, we explore the hypothesis proposed by Ilyas et. al, which posits that DNN image features can be either robust or non-robust, with adversarial attacks targeting the latter. This hypothesis suggests that training a DNN on a dataset consisting solely of robust features should produce a model resistant to adversarial attacks. However, our experiments demonstrate that this is not universally true. To gain further insights into our findings, we analyze the impact of adversarial attack norms on DNN representations, focusing on samples subjected to L2L_2 and L∞L_{\infty} norm attacks. Further, we employ canonical correlation analysis, visualize the representations, and calculate the mean distance between these representations and various DNN decision boundaries. Our results reveal a significant difference between L2L_2 and L∞L_{\infty} norms, which could provide insights into the potential dangers posed by L∞L_{\infty} norm attacks, previously underestimated by the research community.Comment: 16 pages, 5 figure

    Demonstration of a Standalone, Descriptive, and Predictive Digital Twin of a Floating Offshore Wind Turbine

    Full text link
    Digital Twins bring several benefits for planning, operation, and maintenance of remote offshore assets. In this work, we explain the digital twin concept and the capability level scale in the context of wind energy. Furthermore, we demonstrate a standalone digital twin, a descriptive digital twin, and a prescriptive digital twin of an operational floating offshore wind turbine. The standalone digital twin consists of the virtual representation of the wind turbine and its operating environment. While at this level the digital twin does not evolve with the physical turbine, it can be used during the planning-, design-, and construction phases. At the next level, the descriptive digital twin is built upon the standalone digital twin by enhancing the latter with real data from the turbine. All the data is visualized in virtual reality for informed decision-making. Besides being used for data bundling and visualization, the descriptive digital twin forms the basis for diagnostic, predictive, prescriptive, and autonomous tools. A predictive digital twin is created through the use of weather forecasts, neural networks, and transfer learning. Finally, digital twin technology is discussed in a much wider context of ocean engineering
    • …
    corecore