13 research outputs found

    ERβ Binds N-CoR in the Presence of Estrogens via an LXXLL-like Motif in the N-CoR C-terminus

    Get PDF
    Nuclear receptors (NRs) usually bind the corepressors N-CoR and SMRT in the absence of ligand or in the presence of antagonists. Agonist binding leads to corepressor release and recruitment of coactivators. Here, we report that estrogen receptor β (ERβ) binds N-CoR and SMRT in the presence of agonists, but not antagonists, in vitro and in vivo. This ligand preference differs from that of ERα interactions with corepressors, which are inhibited by estradiol, and resembles that of ERβ interactions with coactivators. ERβ /N-CoR interactions involve ERβ AF-2, which also mediates coactivator recognition. Moreover, ERβ recognizes a sequence (PLTIRML) in the N-CoR C-terminus that resembles coactivator LXXLL motifs. Inhibition of histone deacetylase activity specifically potentiates ERβ LBD activity, suggesting that corepressors restrict the activity of AF-2. We conclude that the ER isoforms show completely distinct modes of interaction with a physiologically important corepressor and discuss our results in terms of ER isoform specificity in vivo

    Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study.

    No full text
    BackgroundThe colony stimulating factor 1 receptor (CSF1R) ligands, CSF1 and interleukin-34, and the KIT ligand, stem cell factor, are expressed in glioblastoma (GB). Microglia, macrophages, blood vessels, and tumor cells also express CSF1R, and depletion of the microglia reduces tumor burden and invasive capacity. PLX3397 is an oral, small molecule that selectively inhibits CSF1R and KIT, penetrates the blood-brain barrier in model systems, and represents a novel approach for clinical development.MethodsWe conducted a phase II study in patients with recurrent GB. The primary endpoint was 6-month progression-free survival (PFS6). Secondary endpoints included overall survival response rate, safety, and plasma/tumor tissue pharmacokinetics. Exploratory endpoints included pharmacodynamic measures of drug effect in blood and tumor tissue.ResultsA total of 37 patients were enrolled, with 13 treated prior to a planned surgical resection (Cohort 1) and 24 treated without surgery (Cohort 2). PLX3397 was given at an oral dose of 1000 mg daily and was well tolerated. The primary efficacy endpoint of PFS6 was only 8.6%, with no objective responses. Pharmacokinetic endpoints revealed a median maximal concentration (Cmax) of 8090 ng/mL, with a time to attain Cmax of 2 hour in plasma. Tumor tissue obtained after 7 days of drug exposure revealed a median drug level of 5500 ng/g. Pharmacodynamic changes included an increase in colony stimulating factor 1 and reduced CD14(dim)/CD16+ monocytes in plasma compared with pretreatment baseline values.ConclusionPLX3397 was well tolerated and readily crossed the blood-tumor barrier but showed no efficacy. Additional studies are ongoing, testing combination strategies and potential biomarkers to identify patients with greater likelihood of response

    Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study

    No full text
    BACKGROUND: The colony stimulating factor 1 receptor (CSF1R) ligands, CSF1 and interleukin-34, and the KIT ligand, stem cell factor, are expressed in glioblastoma (GB). Microglia, macrophages, blood vessels, and tumor cells also express CSF1R, and depletion of the microglia reduces tumor burden and invasive capacity. PLX3397 is an oral, small molecule that selectively inhibits CSF1R and KIT, penetrates the blood–brain barrier in model systems, and represents a novel approach for clinical development. METHODS: We conducted a phase II study in patients with recurrent GB. The primary endpoint was 6-month progression-free survival (PFS6). Secondary endpoints included overall survival response rate, safety, and plasma/tumor tissue pharmacokinetics. Exploratory endpoints included pharmacodynamic measures of drug effect in blood and tumor tissue. RESULTS: A total of 37 patients were enrolled, with 13 treated prior to a planned surgical resection (Cohort 1) and 24 treated without surgery (Cohort 2). PLX3397 was given at an oral dose of 1000 mg daily and was well tolerated. The primary efficacy endpoint of PFS6 was only 8.6%, with no objective responses. Pharmacokinetic endpoints revealed a median maximal concentration (C(max)) of 8090 ng/mL, with a time to attain C(max) of 2 hour in plasma. Tumor tissue obtained after 7 days of drug exposure revealed a median drug level of 5500 ng/g. Pharmacodynamic changes included an increase in colony stimulating factor 1 and reduced CD14(dim)/CD16+ monocytes in plasma compared with pretreatment baseline values. CONCLUSION: PLX3397 was well tolerated and readily crossed the blood–tumor barrier but showed no efficacy. Additional studies are ongoing, testing combination strategies and potential biomarkers to identify patients with greater likelihood of response

    Association of Combination of Conformation-Specific KIT Inhibitors With Clinical Benefit inPatients WithRefractory Gastrointestinal Stromal Tumors A Phase 1b/2a Nonrandomized Clinical Trial

    No full text
    IMPORTANCE Many cancer subtypes, including KIT-mutant gastrointestinal stromal tumors (GISTs), are driven by activating mutations in tyrosine kinases and may initially respond to kinase inhibitors but frequently relapse owing to outgrowth of heterogeneous subclones with resistance mutations. KIT inhibitors commonly used to treat GIST (eg, imatinib and sunitinib) are inactive-state (type II) inhibitors. OBJECTIVE To assess whether combining a type II KIT inhibitor with a conformationcomplementary, active-state (type I) KIT inhibitor is associated with broad mutation coverage and global disease control. DESIGN, SETTING, AND PARTICIPANTS A highly selective type I inhibitor of KIT, PLX9486, was tested in a 2-part phase 1b/2a trial. Part 1 (dose escalation) evaluated PLX9486 monotherapy in patients with solid tumors. Part 2e (extension) evaluated PLX9486-sunitinib combination in patients with GIST. Patients were enrolled from March 2015 through February 2019; data analysis was performed from May 2020 through July 2020. INTERVENTIONS Participants received 250, 350, 500, and 1000mg of PLX9486 alone (part 1) or 500 and 1000mg of PLX9486 together with 25 or 37.5mg of sunitinib (part 2e) continuously in 28-day dosing cycles until disease progression, treatment discontinuation, or withdrawal. MAIN OUTCOMES AND MEASURES Pharmacokinetics, safety, and tumor responseswere assessed. Clinical efficacy end points (progression-free survival and clinical benefit rate) were supplemented with longitudinal monitoring of KIT mutations in circulating tumor DNA. RESULTS A total of 39 PLX9486-naive patients (median age, 57 years [range, 39-79 years]; 22 men [56.4%]; 35 [89.7%] with refractory GIST) were enrolled in the dose escalation and extension parts. The recommended phase 2 dose of PLX9486 was 1000mg daily. At this dose, PLX9486 could be safely combined with 25 or 37.5mg daily of sunitinib continuously. Patients with GIST who received PLX9486 at a dose of 500mg or less, at the recommended phase 2 dose, and with sunitinib had median (95% CI) progression-free survivals of 1.74 (1.54-1.84), 5.75 (0.99-11.0), and 12.1 (1.34-NA) months and clinical benefit rates (95% CI) of 14%(0%-58%), 50% (21%-79%), and 80% (52%-96%), respectively. CONCLUSIONS AND RELEVANCE In this phase 1b/2a nonrandomized clinical trial, type I and type II KIT inhibitors PLX9486 and sunitinib were safely coadministered at the recommended dose of both single agents in patients with refractory GIST. Results suggest that cotargeting 2 complementary conformational states of the same kinase was associated with clinical benefit with an acceptable safety profile
    corecore