4 research outputs found

    Structure-based design, synthesis, and A-site rRNA cocrystal complexes of functionally novel aminoglycoside antibiotics: C2" ether analogues of paromomycin.

    No full text
    International audienceA series of 2"-O-substituted ether analogues of paromomycin were prepared based on new site-selective functionalizations. X-ray cocrystal complexes of several such analogues revealed a new mode of binding in the A-site rRNA, whereby rings I and II adopted the familiar orientation and position previously observed with paromomycin, but rings III and IV were oriented differently. With few exceptions, all of the new analogues showed potent inhibitory activity equal or better than paromomycin against a sensitive strain of S. aureus. Single digit microM MIC values were obtained against E. coli, with some of the ether appendages containing polar or basic end groups. Two analogues showed excellent survival rate in a mouse septicemia protection assay. Preliminary histopathological analysis of the kidney showed no overt signs of toxicity, while controls with neomycin and kanamycin were toxic at lower doses

    Oestrogen receptor-mediated liposomal drug delivery for treating melanoma

    No full text
    <p>Function of steroid hormone oestrogen that transactivates oestrogen receptor (ER) is expressed in multiple organs. Except for malignancies of gynaecological organs, ER remains largely unutilised as a target to treat cancers of ER-expressing brain, prostate, skin etc. We have previously developed oestrogen targeting cationic lipid molecule (ES-C10), which showed targeted killing of ER + breast and skin cancer cells. In this study, we explored the targeting ability of ES-C10 as a ligand as well as its additive killing effect (if any), when incorporated in two different liposomes (DCME and DCDE), carrying two anticancer molecules MCIS3 and Docetaxel™, respectively. DCME and DCDE exhibited higher cytotoxicity in ER + cancer cells than in ER − cancer or in non-cancer cells. Both liposomes induced ER-mediated cytotoxicity and caspase 3-induced apoptosis in ER + melanoma cells. Further, decreased levels of pAkt, and increased levels of PTEN and p53 were also observed. Both the targeted liposomes were least haemolytic. These selectively delivered drug-cargoes to tumour mass over other vital organs and induced better anti-tumour effect, which led to increased survivability than their respective controls. In conclusion, we demonstrated the development of two independent liposomal drug-delivery systems associated with an anticancer, oestrogen-structure based ligand for efficient, ER-mediated anti-melanoma effect.</p
    corecore