6,238 research outputs found

    Shell effect in Pb isotopes near the proton drip line

    Full text link
    A mass formula (BWM) without shell effect is employed to study the variation of the shell effect in Pb isotopes through comparison with the experimental data. Unlike other macroscopic formulae, the BWM reproduces the general trend of the binding energy versus neutron number curves of all the nuclei from Li to Bi. The shell effect in Pb-isotopes reduces to ~56 keV at N=106 but, increases gradually for N<106, indicating increasing shell effect in Pb near the proton drip line.Comment: Presented at the Cluster03 Conference, 4 pages, 3 figures, uses espcrc1.st

    Reply to Comment on Extension of the Bethe-Weizsacker mass formula to light nuclei and some new shell closures

    Full text link
    Some properties of the modified Bethe-Weizsacker mass formula (BWM) are discussed. As BWM has no shell effect included, the extra-stability or, magicity in nuclei clearly stands out when experimental mass data are compared with BWM predictions. If the shell effect quenches, the BWM predictions come closer to the experimental data.Comment: 2 pages, no figur

    Self-trapping of a binary Bose-Einstein condensate induced by interspecies interaction

    Full text link
    The problem of self-trapping of a Bose-Einstein condensate (BEC) and a binary BEC in an optical lattice (OL) and double well (DW) is studied using the mean-field Gross-Pitaevskii equation. For both DW and OL, permanent self-trapping occurs in a window of the repulsive nonlinearity gg of the GP equation: gc1<g<gc2g_{c1}<g<g_{c2}. In case of OL, the critical nonlinearities gc1g_{c1} and gc2g_{c2} correspond to a window of chemical potentials ÎĽc1<ÎĽ<ÎĽc2\mu_{c1}<\mu<\mu_{c2} defining the band gap(s) of the periodic OL. The permanent self-trapped BEC in an OL usually represents a breathing oscillation of a stable stationary gap soliton. The permanent self-trapped BEC in a DW, on the other hand, is a dynamically stabilized state without any stationary counterpart. For a binary BEC with intraspecies nonlinearities outside this window of nonlinearity, a permanent self trapping can be induced by tuning the interspecies interaction such that the effective nonlinearities of the components fall in the above window

    Long-range interactions of hydrogen atoms in excited states. III. nS-1S interactions for n >= 3

    Get PDF
    The long-range interaction of excited neutral atoms has a number of interesting and surprising properties, such as the prevalence of long-range, oscillatory tails, and the emergence of numerically large can der Waals C_6 coefficients. Furthermore, the energetically quasi-degenerate nP states require special attention and lead to mathematical subtleties. Here, we analyze the interaction of excited hydrogen atoms in nS states (3 <= n <= 12) with ground-state hydrogen atoms, and find that the C_6 coefficients roughly grow with the fourth power of the principal quantum number, and can reach values in excess of 240,000 (in atomic units) for states with n = 12. The nonretarded van der Waals result is relevant to the distance range R << a_0/alpha, where a_0 is the Bohr radius and alpha is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a_0/alpha << R << hbar c/L, where L is the Lamb shift energy. In this range, the contribution of quasi-degenerate excited nP states remains nonretarded and competes with the 1/R^2 and 1/R^4 tails of the pole terms which are generated by lower-lying mP states with 2 <= m <= n-1, due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R >> hbar c/L. The familiar 1/R^7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation, for highly excited states.Comment: 17 pages; RevTe

    Virtual Resonant Emission and Oscillatory Long-Range Tails in van der Waals Interactions of Excited States: QED Treatment and Applications

    Get PDF
    We report on a quantum electrodynamic (QED) investigation of the interaction between a ground state atom with another atom in an excited state. General expressions, applicable to any atom, are indicated for the long-range tails which are due to virtual resonant emission and absorption into and from vacuum modes whose frequency equals the transition frequency to available lower-lying atomic states. For identical atoms, one of which is in an excited state, we also discuss the mixing term which depends on the symmetry of the two-atom wave function (these evolve into either the gerade or the ungerade state for close approach), and we include all nonresonant states in our rigorous QED treatment. In order to illustrate the findings, we analyze the fine-structure resolved van der Waals interaction for nD-1S hydrogen interactions with n=8,10,12 and find surprisingly large numerical coefficients.Comment: 6 pages; RevTe

    Effect of Irrigation and Potash Levels on Keeping Quality of Potato

    Full text link
    Irrigation and fertilizer are the most dominating factors, in deciding the keeping quality of potato. It is, therefore, essential to formulate the efficient, reliable and economically viable irrigation management strategy with the use of potassium nutrient in order to produce better keeping quality. The investigation comprising four levels of irrigation (25, 30, 35 and 40 mm CPE (Cumulative pan evaporation) and four levels of potash (0, 100, 125 and 150 kg/ha) was carried out at Research Farm of the Department of Vegetable Science, CCS Haryana Agricultural University, (Haryana) Hisar, India during two years to find out the optimum level of irrigation and potash for obtaining higher yield of potatoes with better keeping quality at ambient room temperature. The potato variety used for the investigation was Kufri Bahar. The treatments were laid out in a split plot design with three replications. The increasing levels of irrigation and potash showed significant improvement in keeping quality parameters of potato. Likewise, the values for physiological loss in weight and decay loss of potato tubers (%) at 15, 30, 45 and 60 days after harvest were the lowest with irrigation level 40 mm CPE and application of potash @ 150 kg/ha. The two years results suggest that the irrigation level 40 mm CPE along with potash @ 150 kg/ha has shown the best treatment combination for the storage of potato at ambient room temperature under semiarid conditions of Hisar (Haryana)

    Subtraction of Newtonian Noise Using Optimized Sensor Arrays

    Get PDF
    Fluctuations in the local Newtonian gravitational field present a limit to high precision measurements, including searches for gravitational waves using laser interferometers. In this work, we present a model of this perturbing gravitational field and evaluate schemes to mitigate the effect by estimating and subtracting it from the interferometer data stream. Information about the Newtonian noise is obtained from simulated seismic data. The method is tested on causal as well as acausal implementations of noise subtraction. In both cases it is demonstrated that broadband mitigation factors close to 10 can be achieved removing Newtonian noise as a dominant noise contribution. The resulting improvement in the detector sensitivity will substantially enhance the detection rate of gravitational radiation from cosmological sources.Comment: 29 pages, 11 figure
    • …
    corecore