3 research outputs found

    Real-time monitoring of a circulating vaccine-derived poliovirus outbreak immunization campaign using digital health technologies in South Sudan

    Get PDF
    Introduction: the use of digital health technologies and geographical information systems (GIS) in the conduct of immunization campaigns had proven to be a success story, and is gaining acceptance towards improving supervision, accountability, and real-time access to quality information. The demand for real-time information by policymakers and stakeholders in the polio eradication programme is increasing towards ensuring a world free from all polioviruses. This study aims to develop a tool that monitor and evaluate the circulating vaccine-derived poliovirus (cVDPV) campaign processes in real-time using open data kits (ODK) to collect data, analyze and visualize using an interactive dashboard in Power BI, towards improving timeliness and completeness of data reporting and providing real-time quality information to stakeholders. Methods: electronic checklists were developed using open data kits (ODK) and uploaded onto android-based smartphones for data collection during a round of cVDPV outbreak response immunization. Supervisors were deployed to the field and the checklists were utilized at both stages of the campaign activities. A Power BI data visualization tool was used for reporting, analysis, and monitoring the activities of the campaign. Results: an interactive dashboard was developed, providing real-time information that supports stakeholders during the campaign processes with improved timeliness and completeness of data reporting. The usage of the tool during the campaign enhanced close supervision, and increased transparency in data availability and accessibility by all partners. Conclusion: the study had shown that real-time information has significantly improved the smooth conduct of the immunization campaign processes through identifying gaps, and challenges in the field and can be utilized in similar resource settings including complex and humanitarian. It has demonstrated the capability of mobile phones using ODK for data collection and linked to a Power BI dashboard for enhanced supervision and transparency, and we encourage further studies to assess the effects of the tools on the campaign results

    Characteristics of wild polio virus outbreak investigation and response in Ethiopia in 2013–2014: implications for prevention of outbreaks due to importations

    No full text
    Abstract Background Ethiopia joined the Global Polio Eradication Initiative (GPEI) in 1996, and by the end of December 2001 circulation of indigenous Wild Polio Virus (WPV) had been interrupted. Nonetheless, the country experienced multiple importations during 2004–2008, and in 2013. We characterize the 2013 outbreak investigations and response activities, and document lessons learned. Method The data were pulled from different field investigation reports and from the national surveillance database for Acute Flaccid Paralysis (AFP). Results In 2013, a WPV1 outbreak was confirmed following importation in Dollo zone of the Somali region, which affected three Woredas (Warder, Geladi and Bokh). Between July 10, 2013, and January 5, 2014, there were 10 children paralyzed due to WPV1 infection. The majorities (7 of 10) were male and below 5 years of age, and 7 of 10 cases was not vaccinated, and 72% (92/129) of < 5 years of old children living in close proximity with WPV cases had zero doses of oral polio vaccine (OPV). The travel history of the cases showed that seven of the 10 cases had contact with someone who had traveled or had a travel history prior to the onset of paralysis. Underserved and inaccessibility of routine immunization service, suboptimal surveillance sensitivity, poor quality and inadequate supplemental immunization were the most crucial gaps identified during the outbreak investigations. Conclusion Prior to the 2013 outbreak, Ethiopia experienced multiple imported polio outbreaks following the interruption of indigenous WPV in December 2001. The 2013 outbreak erupted due to massive population movement and was fueled by low population immunity as a result of low routine immunization and supplemental Immunization coverage and quality. In order to avert future outbreaks, it is critical that surveillance sensitivity be improved by establishing community-based surveillance systems and by assigning surveillance focal points at all level particularly in border areas. In addition, it is vital to set up in hard to reach areas a functional immunization service delivery system using the “Reaching Every Child” approach, including periodic routine immunization intensification and supplemental immunization activities
    corecore