384 research outputs found
Evolution of a beam dynamics model for the transport lines in a proton therapy facility
Despite the fact that the first-order beam dynamics models allow an
approximated evaluation of the beam properties, their contribution is essential
during the conceptual design of an accelerator or beamline. However, during the
commissioning some of their limitations appear in the comparison against
measurements. The extension of the linear model to higher order effects is,
therefore, demanded. In this paper, the effects of particle-matter interaction
have been included in the model of the transport lines in the proton therapy
facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the
performance of the facility, a more precise model was required and has been
developed with the multi-particle open source beam dynamics code called OPAL
(Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo
simulations of Coulomb scattering and energy loss are performed seamless with
the particle tracking. Beside the linear optics, the influence of the passive
elements (e.g. degrader, collimators, scattering foils and air gaps) on the
beam emittance and energy spread can be analysed in the new model. This allows
for a significantly improved precision in the prediction of beam transmission
and beam properties. The accuracy of the OPAL model has been confirmed by
numerous measurements.Comment: 17 pages, 19 figure
Nucleation and Growth of GaN/AlN Quantum Dots
We study the nucleation of GaN islands grown by plasma-assisted
molecular-beam epitaxy on AlN(0001) in a Stranski-Krastanov mode. In
particular, we assess the variation of their height and density as a function
of GaN coverage. We show that the GaN growth passes four stages: initially, the
growth is layer-by-layer; subsequently, two-dimensional precursor islands form,
which transform into genuine three-dimensional islands. During the latter
stage, island height and density increase with GaN coverage until the density
saturates. During further GaN growth, the density remains constant and a
bimodal height distribution appears. The variation of island height and density
as a function of substrate temperature is discussed in the framework of an
equilibrium model for Stranski-Krastanov growth.Comment: Submitted to PRB, 10 pages, 15 figure
Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices
We discuss methods for imaging the nonequilibrium spin polarization of
electrons in Fe/GaAs spin transport devices. Both optically- and
electrically-injected spin distributions are studied by scanning
magneto-optical Kerr rotation microscopy. Related methods are used to
demonstrate electrical spin detection of optically-injected spin polarized
currents. Dynamical properties of spin transport are inferred from studies
based on the Hanle effect, and the influence of strain on spin transport data
in these devices is discussed.Comment: 5 pages, 6 figs. ICPS-28 proceedings (July'06, Vienna) for J. Appl.
Phy
Spin injection from perpendicular magnetized ferromagnetic -MnGa into (Al,Ga)As heterostructures
Electrical spin injection from ferromagnetic -MnGa into an (Al,Ga)As
p-i-n light emitting diode (LED) is demonstrated. The -MnGa layers show
strong perpendicular magnetocrystalline anisotropy, enabling detection of spin
injection at remanence without an applied magnetic field. The bias and
temperature dependence of the spin injection are found to be qualitatively
similar to Fe-based spin LED devices. A Hanle effect is observed and
demonstrates complete depolarization of spins in the semiconductor in a
transverse magnetic field.Comment: 4 pages, 3 figure
Growth and optical properties of GaN/AlN quantum wells
We demonstrate the growth of GaN/AlN quantum well structures by
plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant
effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with
photon energies in the range between 4.2 and 2.3 eV for well widths between 0.7
and 2.6 nm, respectively. An internal electric field strength of
MV/cm is deduced from the dependence of the emission energy on the well width.Comment: Submitted to AP
- …