3 research outputs found

    The Potential of Recycling the High-Zinc Fraction of Upgraded BF Sludge to the Desulfurization Plant and Basic Oxygen Furnace

    No full text
    In ore-based steelmaking, blast furnace (BF) dust is generally recycled to the BF via the sinter or cold-bonded briquettes and injection. In order to recycle the BF sludge to the BF, the sludge has to be upgraded, removing zinc. The literature reports cases of recycling the low-zinc fraction of upgraded BF sludge to the BF. However, research towards recycling of the high-zinc fraction of BF sludge within the ore-based steel plant is limited. In the present paper, the high-zinc fraction of tornado-treated BF sludge was incorporated in self-reducing cold-bonded briquettes and pellets. Each type of agglomerate was individually subjected to technical-scale smelting reduction experiments aiming to study the feasibility of recycling in-plant residues to the hot metal (HM) desulfurization (deS) plant. The endothermic reactions within the briquettes decreased the heating and reduction rate leaving the briquettes unreduced and unmelted. The pellets were completely reduced within eight minutes of contact with HM but still showed melt-in problems. Cold-bonded briquettes, without BF sludge, were charged in industrial-scale trials to study the recycling potential to the HM deS plant and basic oxygen furnace (BOF). The trials illustrated a potential for the complete recycling of the high-zinc fraction of BF sludge. However, further studies were identified to be required to verify these results.Konferensartikel i tidskrift</p

    A Holistic and Experimentally-Based View on Recycling of Off-Gas Dust within the Integrated Steel Plant

    No full text
    Ore-based ironmaking generates a variety of residues, including slags and fines such as dust and sludges. Recycling of these residues within the integrated steel plant or in other applications is essential from a raw-material efficiency perspective. The main recycling route of off-gas dust is to the blast furnace (BF) via sinter, cold-bonded briquettes and tuyere injection. However, solely relying on the BF for recycling implicates that certain residues cannot be recycled in order to avoid build-up of unwanted elements, such as zinc. By introducing a holistic view on recycling where recycling via other process routes, such as the desulfurization (deS) station and the basic oxygen furnace (BOF), landfilling can be avoided. In the present study, process integration analyses were utilized to determine the most efficient recycling routes for off-gas dust that are currently not recycled within the integrated steel plants of Sweden. The feasibility of recycling was studied in experiments conducted in laboratory, pilot, and full-scale trials in the BF, deS station, and BOF. The process integration analyses suggested that recycling to the BF should be maximized before considering the deS station and BOF. The experiments indicated that the amount of residue that are not recycled could be minimized
    corecore