7 research outputs found

    A semantic sensor web framework for proactive environmental monitoring and control.

    Get PDF
    Doctor of Philosophy in Computer Science, University of KwaZulu-Natal, Westville, 2017.Observing and monitoring of the natural and built environments is crucial for main- taining and preserving human life. Environmental monitoring applications typically incorporate some sensor technology to continually observe specific features of inter- est in the physical environment and transmitting data emanating from these sensors to a computing system for analysis. Semantic Sensor Web technology supports se- mantic enrichment of sensor data and provides expressive analytic techniques for data fusion, situation detection and situation analysis. Despite the promising successes of the Semantic Sensor Web technology, current Semantic Sensor Web frameworks are typically focused at developing applications for detecting and reacting to situations detected from current or past observations. While these reactive applications provide a quick response to detected situations to minimize adverse effects, they are limited when it comes to anticipating future adverse situations and determining proactive control actions to prevent or mitigate these situations. Most current Semantic Sensor Web frameworks lack two essential mechanisms required to achieve proactive control, namely, mechanisms for antici- pating the future and coherent mechanisms for consistent decision processing and planning. Designing and developing proactive monitoring and control Semantic Sensor Web applications is challenging. It requires incorporating and integrating different tech- niques for supporting situation detection, situation prediction, decision making and planning in a coherent framework. This research proposes a coherent Semantic Sen- sor Web framework for proactive monitoring and control. It incorporates ontology to facilitate situation detection from streaming sensor observations, statistical ma- chine learning for situation prediction and Markov Decision Processes for decision making and planning. The efficacy and use of the framework is evaluated through the development of two different prototype applications. The first application is for proactive monitoring and control of indoor air quality to avoid poor air quality situations. The second is for proactive monitoring and control of electricity usage in blocks of residential houses to prevent strain on the national grid. These appli- cations show the effectiveness of the proposed framework for developing Semantic Sensor Web applications that proactively avert unwanted environmental situations before they occur

    Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals

    Get PDF
    Human and animal waste, including waste products originating from human or animal digestive systems, such as urine, feces, and animal manure, have constituted a nuisance to the environment. Inappropriate disposal and poor sanitation of human and animal waste often cause negative impacts on human health through contamination of the terrestrial environment, soil, and water bodies. Therefore, it is necessary to convert these wastes into useful resources to mitigate their adverse environmental effect. The present study provides an overview and research progress of different thermochemical and biological conversion pathways for the transformation of human- and animal-derived waste into valuable resources. The physicochemical properties of human and animal waste are meticulously discussed, as well as nutrient recovery strategies. In addition, a bibliometric analysis is provided to identify the trends in research and knowledge gaps. The results reveal that the USA, China, and England are the dominant countries in the research areas related to resource recovery from human or animal waste. In addition, researchers from the University of Illinois, the University of California Davis, the Chinese Academy of Sciences, and Zhejiang University are front runners in research related to these areas. Future research could be extended to the development of technologies for on-site recovery of resources, exploring integrated resource recovery pathways, and exploring different safe waste processing methods

    Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials and Value-Added Chemicals

    Get PDF
    Human and animal waste, including waste products originating from human or animal digestive systems such as urine, feces, and animal manure, have constituted a nuisance to the environment. Inappropriate disposal and poor sanitation of human and animal waste often cause negative impacts on human health through contamination of the terrestrial environment, soil, and water bodies. Therefore, it is necessary to convert these wastes into useful resources to mitigate their adverse environmental effect. The present study provides an overview and research progress of different thermochemical and biological conversion pathways for the transformation of human- and animal-derived waste into valuable resources. The physicochemical properties of human and animal waste are meticulously discussed as well as nutrient recovery strategies. In addition, a bibliometric analysis is provided to identify the trends in research and knowledge gaps. The results reveal that the U.S.A, China and England are the dominant countries in the research areas related to resource recovery from human or animal waste. In addition, researchers from the University of Illinois, the University of California Davis, the Chinese Academy of Science and Zhejiang University are front runners in research related to these areas. Future research should be centred on developing technologies for the on-site recovery of resources, exploring integrated resource recovery pathways, and exploring different safe waste processing methods

    Synthesis and Characterization of Eggshell-derived Hydroxyapatite for Dental Implant Applications

    No full text
    Hydroxyapatite (HAp) production from eggshells for dental implant purposes involved a novel approach utilizing a wet chemical precipitation technique. The eggshells, finely ground to a size below 250 µm, underwent calcination at a high temperature of 900°C for 2 hours. This thermal treatment facilitated the conversion of calcium carbonate into calcium oxide (CaO) while eliminating any organic components in the eggshell. To initiate the synthesis of HAp, a solution comprising 0.6 M phosphoric acid was added to the CaO dispersed in water. The resulting mixture was allowed to undergo aging at different time intervals ranging from 0 to 24 hours, promoting the formation of HAp. Subsequently, the HAp particles were oven-dried at 100°C for 2 hours to remove residual moisture. Finally, the dried particles were sintered at 1200°C in a muffle furnace to achieve the desired properties for dental implant applications. XRD peaks at 25, 33, 40, and 50° confirm the synthesized material as HAp. Vibrational modes of phosphate (PO43-), hydroxyl (OH-), and carbonate (CO32-) groups indicate carbonated HAp. Synthesized HAp holds potential for biomedical applications

    Biomethane and propylene glycol synthesis via a novel integrated catalytic transfer hydrogenolysis, carbon capture and biomethanation process

    Get PDF
    A novel conceptual design for the co-production of biomethane and propylene glycol from integrated catalytic transfer hydrogenolysis (CTH), biogenic CO2 capture and biomethanation reaction was presented in this study. Furthermore, process economics and environmental impact study was performed to appraise the feasibility of the proposed design. The minimum selling price (MSP) of propylene glycol produced considering the overall cost of biomethane as co-product is 1.41 U.S./kg.However,ifthecostofbiomethanewasnotconsideredorifthebiomethaneproducedisnotenoughtoyieldayearlyrevenuethentheMSPwouldincreaseto1.43 U.S./kg. However, if the cost of biomethane was not considered or if the biomethane produced is not enough to yield a yearly revenue then the MSP would increase to 1.43 U.S./kg. The MSP of biomethane for the integrated process was 148 U.S.$/MWh. The MSPs of propylene glycol and biomethane were comparable with those of the business-as-usual technology. Factors such as hydrogen donor solvent cost, catalyst cost, electricity price and equipment purchase cost influenced the MSP. Environmental assessment studies showed that the standalone CTH had a higher overall carbon footprint (carbon emissions of 3.7 MM tonnes/yr.). This could be attributed to the consumption of CO2 derived from the process streams via biomethanation process

    Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview

    No full text
    Rapid industrial developments and rising population are mounting concerns, leading to increased greenhouse gas (GHG) emissions and resultant climate change. Therefore, to curb such drastic trends, it is necessary to adopt and develop a sustainable environment. Among the most effective ways to lower GHG emissions is carbon capture. Absorption is one of the most mature methods of reducing CO2 due to its high processing capacity, excellent adaptability, and reliability. This study aims to evaluate the most recent advancements in various CO2 capture techniques, with an emphasis on absorption technology. The techno-economic analyses of absorption-based CO2 capture processes were meticulously discussed. These include studies on solvent screening as well as techno-economic analysis methods. Economic estimators such as the payback period, rate of return and net present value are discussed. The research progress in absorption-based capture compared to other separation methods, is elucidated. Advances in the applications of various absorption solvents including aqueous, phase change solvents and deep eutectic solvents are presented. Finally, key recommendations are provided to tackle the challenges for efficient utilization of the absorption technique
    corecore