18 research outputs found

    DQ and FSIQ range, mean and SD in A, B, C group.

    No full text
    <p><b>A group</b>: Patients with mutations upstream exon 44 (n 17), <b>B group</b>: Patients with mutations in exon 44–55 predicted to affect Dp140 (n19), <b>C group</b>: Patients with mutations downstream of exon 62, known to affect all the brain isoforms of dystrophin, including the lower molecular weight Dp71 isoform (n = 2).</p

    Image_1_Case report: A novel ACTA1 variant in a patient with nemaline rods and increased glycogen deposition.pdf

    No full text
    BackgroundCongenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario.Case presentationHere, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin.ConclusionOur case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.</p

    Implicit learning deficit in children with Duchenne muscular dystrophy: Evidence for a cerebellar cognitive impairment?

    Get PDF
    <div><p>This study aimed at comparing implicit sequence learning in individuals affected by Duchenne Muscular Dystrophy without intellectual disability and age-matched typically developing children. A modified version of the Serial Reaction Time task was administered to 32 Duchenne children and 37 controls of comparable chronological age. The Duchenne group showed a reduced rate of implicit learning even if in the absence of global intellectual disability. This finding provides further evidence of the involvement of specific aspects of cognitive function in Duchenne muscular dystrophy and on its possible neurobiological substrate.</p></div

    Human skeletal myopathy myosin mutations disrupt myosin head sequestration

    No full text
    Myosin heavy chains encoded by MYH7 and MYH2 are abundant in human skeletal muscle and important for muscle contraction. However, it is unclear how mutations in these genes disrupt myosin structure and function leading to skeletal muscle myopathies termed myosinopathies. Here, we used multiple approaches to analyze the effects of common MYH7 and MYH2 mutations in the light meromyosin (LMM) region of myosin. Analyses of expressed and purified MYH7 and MYH2 LMM mutant proteins combined with in silico modeling showed that myosin coiled coil structure and packing of filaments in vitro are commonly disrupted. Using muscle biopsies from patients and fluorescent ATP analog chase protocols to estimate the proportion of myosin heads that were super-relaxed, together with x-ray diffraction measurements to estimate myosin head order, we found that basal myosin ATP consumption was increased and the myosin super-relaxed state was decreased in vivo. In addition, myofiber mechanics experiments to investigate contractile function showed that myofiber contractility was not affected. These findings indicate that the structural remodeling associated with LMM mutations induces a pathogenic state in which formation of shutdown heads is impaired, thus increasing myosin head ATP demand in the filaments, rather than affecting contractility. These key findings will help design future therapies for myosinopathies.</p

    Revised North Star Ambulatory Assessment for Young Boys with Duchenne Muscular Dystrophy

    No full text
    <div><p>The advent of therapeutic approaches for Duchenne muscular dystrophy (DMD) has highlighted the need to identify reliable outcome measures for young boys with DMD. The aim of this study was to develop a revised version of the North Star Ambulatory Assessment (NSAA) suitable for boys between the age of 3 and 5 years by identifying age appropriate items and revising the scoring system accordingly. Using the scale in 171 controls between the age of 2.9 and 4.8 years, we identified items that were appropriate at different age points. An item was defined as age appropriate if it was completed, achieving a full score, by at least 85% of the typically developing boys at that age. At 3 years (±3months) there were only 8 items that were age appropriate, at 3 years and 6 months there were 13 items while by the age of 4 years all 17 items were appropriate. A revised version of the scale was developed with items ordered according to the age when they could be reliably performed. The application of the revised version of the scale to data collected in young DMD boys showed that very few of the DMD boys were able to complete with a full score all the age appropriate items. In conclusion, our study suggests that a revised version of the NSAA can be used in boys from the age of 3 years to obtain information on how young DMD boys acquire new abilities and how this correlates with their peers.</p></div
    corecore