7 research outputs found

    Dietary protein restriction inhibits tumor growth in human xenograft models of prostate and breast cancer

    Get PDF
    Purpose: Data from epidemiological and experimental studies suggest that dietary protein intake may play a role in inhibiting prostate and breast cancer by modulating the IGF/AKT/mTOR pathway. In this study we investigated the effects of diets with different protein content or quality on prostate and breast cancer. Experimental Design: To test our hypothesis we assessed the inhibitory effect of protein diet restriction on prostate and breast cancer growth, serum PSA and IGF-1 concentrations, mTOR activity and epigenetic markers, by using human xenograft cancer models. Results: Our results showed a 70% inhibition of tumor growth in the castrate-resistant LuCaP23.1 prostate cancer model and a 56% inhibition in the WHIM16 breast cancer model fed with a 7% protein diet when compared to an isocaloric 21% protein diet. Inhibition of tumor growth correlated, in the LuCaP23.1 model, with decreased serum PSA and IGF-1 levels, down-regulation of mTORC1 activity, decreased cell proliferation as indicated by Ki67 staining, and reduction in epigenetic markers of prostate cancer progression, including the histone methyltransferase EZH2 and the associated histone mark H3K27me3. In addition, we observed that modifications of dietary protein quality, independently of protein quantity, decreased tumor growth. A diet containing 20% plant protein inhibited tumor weight by 37% as compared to a 20% animal dairy protein diet. Conclusions: Our findings suggest that a reduction in dietary protein intake is highly effective in inhibiting tumor growth in human xenograft prostate and breast cancer models, possibly through the inhibition of the IGF/AKT/mTOR pathway and epigenetic modifications

    Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma

    Get PDF
    Purpose: Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. Experimental Design: We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. Results: The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3–tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. Conclusions: These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3–tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3–tRCC

    Concurrent HDAC and mTORC1 inhibition attenuate androgen receptor and hypoxia signaling associated with alterations in microRNA expression.

    Get PDF
    Specific inhibitors towards Histone Deacetylases (HDACs) and Mammalian Target of Rapamycin Complex 1 (mTORC1) have been developed and demonstrate potential as treatments for patients with advanced and/or metastatic and castrate resistant prostate cancer (PCa). Further, deregulation of HDAC expression and mTORC1 activity are documented in PCa and provide rational targets to create new therapeutic strategies to treat PCa. Here we report the use of the c-Myc adenocarcinoma cell line from the c-Myc transgenic mouse with prostate cancer to evaluate the in vitro and in vivo anti-tumor activity of the combination of the HDAC inhibitor panobinostat with the mTORC1 inhibitor everolimus. Panobinostat/everolimus combination treatment resulted in significantly greater antitumor activity in mice bearing androgen sensitive Myc-CaP and castrate resistant Myc-CaP tumors compared to single treatments. We identified that panobinostat/everolimus combination resulted in enhanced anti-tumor activity mediated by decreased tumor growth concurrent with augmentation of p21 and p27 expression and the attenuation of angiogenesis and tumor proliferation via androgen receptor, c-Myc and HIF-1α signaling. Also, we observed altered expression of microRNAs associated with these three transcription factors. Overall, our results demonstrate that low dose concurrent panobinostat/everolimus combination therapy is well tolerated and results in greater anti-tumor activity compared to single treatments in tumor bearing immuno-competent mice. Finally, our results suggest that response of selected miRs could be utilized to monitor panobinostat/everolimus in vivo activity
    corecore