28 research outputs found

    Behaviour of settling coral reef fishes and supplementary mamagement tools

    Get PDF
    Coral reef fish larvae take an active role in selecting their settlement site and sensory cues may help them to orientate during this process. As settlement is a period of transition through which the majority of individuals do not survive, it is often a focal point for the management of coral reef populations, which are of high conservation concern. In this thesis, I used choice tests and in situ techniques to assess the response of settlement-stage larvae to a range of odour, light and acoustic cues and I found that larvae are more selective in their response to sensory stimuli than previously thought. Micro-habitat odours are not likely to be used during settlement orientation, and odour cues may be used to avoid inappropriate settlement sites. The photopositive behaviour of larval fish is likely to match their spectral sensitivity but this proved difficult to assess in situ because of the high amount of spatial and temporal variation in larval distribution. The positive response of settlement-stage fish to played back reef noise is location specific as well as being highly specific to the reef sound recording. To understand whether it might be the composition of reef sound that drives the selective response of larvae to acoustic cues, I took sound recordings while collecting visual data on fish diversity and the behavioural activity of a sound producing, or soniferous, fish species. I found that the variation in intensity of reef noise matches the activity patterns of a soniferous species, and when reef noise is most intense is when visual estimates on the diversity of the reef fish assemblage are decreased. This information provides the basis for understanding how changes in the reef soundscape may effect larval recruitment and has exciting implications for using sound recordings as a method to monitor coral reefs. Finally, I tested the viability of releasing reared larvae to boost depleted populations and found that collecting and holding settlement-stage fish for a week can increase survival, relative to natural settlement. These data demonstrate that applying our knowledge of the settlement behaviour of coral reef fish will make a significant contribution to developing tools for management

    Natural bounds on herbivorous coral reef fishes

    Get PDF
    Humans are an increasingly dominant driver of Earth's biological communities, but differentiating human impacts from natural drivers of ecosystem state is crucial. Herbivorous fish play a key role in maintaining coral dominance on coral reefs, and are widely affected by human activities, principally fishing. We assess the relative importance of human and biophysical (habitat and oceanographic) drivers on the biomass of five herbivorous functional groups among 33 islands in the central and western Pacific Ocean. Human impacts were clear for some, but not all, herbivore groups. Biomass of browsers, large excavators, and of all herbivores combined declined rapidly with increasing human population density, whereas grazers, scrapers, and detritivores displayed no relationship. Sea-surface temperature had significant but opposing effects on the biomass of detritivores (positive) and browsers (negative). Similarly, the biomass of scrapers, grazers, and detritivores correlated with habitat structural complexity; however, relationships were group specific. Finally, the biomass of browsers and large excavators was related to island geomorphology, both peaking on low-lying islands and atolls. The substantial variability in herbivore populations explained by natural biophysical drivers highlights the need for locally appropriate management targets on coral reefs

    Ecological Impacts of the 2015/16 El Niño in the Central Equatorial Pacific

    Get PDF
    The authors thank Cisco Werner (NOAA/NMFS) for proposing this special issue and encouraging our submission. We thank each of the editors, Stephanie Herring, Peter Stott, and Nikos Christidis, for helpful guidance and support throughout the submittal process. We also thank each of the anonymous external reviewers for thoughtful guidance and suggestions to improve the manuscript. REB, TO, RV, AH, and BVA are grateful for support from the NOAA Coral Reef Conservation Program. AC acknowledges support from the National Science Foundation for the following awards: OCE 1537338, OCE 1605365, and OCE 1031971. This is PMEL contribution no. 4698. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government. The views expressed in the article are not necessarily those of the U.S. government. (NOAA Coral Reef Conservation Program; OCE 1537338 - National Science Foundation; OCE 1605365 - National Science Foundation; OCE 1031971 - National Science Foundation

    Linking variation in planktonic primary production to coral reef fish growth and condition

    Get PDF
    Within low-nutrient tropical oceans, islands and atolls with higher primary production support higher fish biomass and reef organism abundance. External energy subsidies can be delivered onto reefs via a range of physical mechanisms. However, the influence of spatial variation in primary production on reef fish growth and condition is largely unknown. It is not yet clear how energy subsidies interact with reef depth and slope. Here we test the hypothesis that with increased proximity to deep-water oceanic nutrient sources, or at sites with shallower reef slopes, parameters of fish growth and condition will be higher. Contrary to expectations, we found no association between fish growth rate and sites with higher mean chlorophyll-a values. There were no differences in fish δ 15N or δ 13C values between depths. The relationship between fish condition and primary production was influenced by depth, driven by increased fish condition at shallow depths within a primary production 'hotspot' site. Carbon δ 13C was depleted with increasing primary production, and interacted with reef slope. Our results indicate that variable primary production did not influence growth rates in planktivorous Chromis fieldi within 10-17.5 m depth, but show site-specific variation in reef physical characteristics influencing fish carbon isotopic composition

    Linking variation in planktonic primary production to coral reef fish growth and condition

    Get PDF
    Within low-nutrient tropical oceans, islands and atolls with higher primary production support higher fish biomass and reef organism abundance. External energy subsidies can be delivered onto reefs via a range of physical mechanisms. However, the influence of spatial variation in primary production on reef fish growth and condition is largely unknown. It is not yet dear how energy subsidies interact with reef depth and slope. Here we test the hypothesis that with increased proximity to deep-water oceanic nutrient sources, or at sites with shallower reef slopes, parameters of fish growth and condition will be higher. Contrary to expectations, we found no association between fish growth rate and sites with higher mean chlorophyll-a values. There were no differences in fish delta N-15 or delta C-13 values between depths. The relationship between fish condition and primary production was influenced by depth, driven by increased fish condition at shallow depths within a primary production 'hotspot' site. Carbon delta C-13 was depleted with increasing primary production, and interacted with reef slope. Our results indicate that variable primary production did not influence growth rates in planktivorous Chromis fieldi within 10-17.5 m depth, but show site-specific variation in reef physical characteristics influencing fish carbon isotopic composition

    Spatial and temporal scales of coral reef fish ecological research and management: a systematic map protocol

    Get PDF
    Background Coral reefs are rapidly changing in response to local and global stressors. Research to better understand and inform the management of these stressors is burgeoning. However, in situ studies of coral reef ecology are constrained by complex logistics and limited resources. Many reef studies are also hampered by the scale-dependent nature of ecological patterns, and inferences made on causal relationships within coral reef systems are limited by the scales of observation. This is because most socio-ecological studies are conducted at scales relevant to the phenomenon of interest. However, management often occurs across a significantly broader, often geopolitical, range of scales. While there is a critical need for incisive coral reef management actions at relevant spatial and temporal scales, it remains unclear to what extent the scales of empirical study overlap with the scales at which management inferences and recommendations are made. This systematic map protocol will evaluate this potential scale mismatch with the goal of raising awareness about the significance of effectively addressing and reporting the scales at which researchers collect data and make assumptions. Methods We will use the Collaboration for Environmental Evidence (CEE) systematic mapping guidelines to identify relevant studies using a framework-based synthesis to summarise the spatial and temporal scales of coral reef fish ecology research and the scales at which management inferences or recommendations are made. Using tested predefined terms, we will search for relevant published academic and grey literature, including bibliographic databases, web-based search engines, and organisational websites. Inclusion criteria for the evidence map are empirical studies that focus on coral reef fish ecological organisation and processes, those informing management interventions and policy decisions, and management documents that cite coral reef research for management decision-making. Study results will be displayed graphically using data matrices and heat maps. This is the first attempt to systematically assess and compare the scales of socio-ecological research conducted on coral reef systems with their management
    corecore