8 research outputs found

    Assessment of the Effects of Methanol Leaf Extract of Clerodendrum violaceum on the Liver of Mice

    Get PDF
    Effects of methanol leaf extract of Clerodendrum violaceum on liver function indices of Swiss mice was evaluated. Six groups (A-F) of ten mice each were used. Groups B-F were administered 31.25, 62.5, 125, 250, 500 mg/kg body weight of methanol leaf extract of Clerodendrum violaceum, respectively. Group A received 5% DMSO (control). Five animals in each group were sacrificed after 14 days of administration; the remaining were sacrificed after 28 days of administration. Blood was collected for analyses, livers were collected and weighed. Some of the liver samples were homogenized and some preserved in 10% formalin for histopathological examination. After 14 days, there was significant increase (p < 0.05) in total and conjugated bilirubin and significant reduction (p < 0.05) of albumin and total protein at higher doses. Activities of ALP and γ-GT in serum were significantly elevated (p < 0.05) at all doses while liver and serum ALT activity only at lower doses. Liver and serum AST activity were also significantly elevated (p < 0.05) at higher doses. Activities of ALP and γ-GT in the liver were significantly reduced (p < 0.05) at all doses while ALT activity only reduced at the highest dose in liver and serum. AST activity was reduced at higher doses in liver but only at highest dose in serum. Liver tissue was inflamed with progressive degeneration on day 28. Results showed that methanol leaf extract of C. violaceum adversely affected the normal architecture, synthetic and secretory functions of the liver at high doses

    Lipid Profile and Liver Histochemistry in Animal Models Exposed to Cigarette Smoke

    No full text
    Cigarette smoke is known to be an important predisposing factor to many diseased conditions, such as cardiovascular diseases, liver disease, atherosclerosis and other metabolic disorders. The aim of this study was to examine the effects of exposure to smoke from burnt cotton wool and cigarette on plasma lipids, liver biochemistry and histology, in adult Wistar rats. The animals were divided into three groups of Control A: exposed to fresh atmospheric air; Group B: exposed to cotton wool smoke; and, Group C, exposed to cigarette smoke; and the experiment lasted for 35 days. The animals exposed to cigarette smoke and cotton wool smoke showed higher values of low density lipoprotein (LDL), and lower values of high density lipoprotein (HDL) compared to the control. The observation of the micro architecture and enzymes of the liver tissue revealed reduction in the number and size of liver cells, numerous fibrous tissues, elevated liver transaminases and reduction in endogenous anti-oxidants, with evidence of fatty degeneration, in animals exposed to cigarette smoke compared to those exposed to cotton wool smoke and fresh atmospheric air. Cigarette smoke caused accumulation of lipids in the liver cells, with evidence of on-going necrosis and fibrosis, which indicated the presence of non-alcoholic fatty liver disease

    Lipid Profile and Liver Histochemistry in Animal Models Exposed to Cigarette Smoke

    No full text
    Cigarette smoke is known to be an important predisposing factor to many diseased conditions, such as cardiovascular diseases, liver disease, atherosclerosis and other metabolic disorders. The aim of this study was to examine the effects of exposure to smoke from burnt cotton wool and cigarette on plasma lipids, liver biochemistry and histology, in adult Wistar rats. The animals were divided into three groups of Control A: exposed to fresh atmospheric air; Group B: exposed to cotton wool smoke; and, Group C, exposed to cigarette smoke; and the experiment lasted for 35 days. The animals exposed to cigarette smoke and cotton wool smoke showed higher values of low density lipoprotein (LDL), and lower values of high density lipoprotein (HDL) compared to the control. The observation of the micro architecture and enzymes of the liver tissue revealed reduction in the number and size of liver cells, numerous fibrous tissues, elevated liver transaminases and reduction in endogenous anti-oxidants, with evidence of fatty degeneration, in animals exposed to cigarette smoke compared to those exposed to cotton wool smoke and fresh atmospheric air. Cigarette smoke caused accumulation of lipids in the liver cells, with evidence of on-going necrosis and fibrosis, which indicated the presence of non-alcoholic fatty liver disease

    Global Burden of Cardiovascular Diseases and Risks, 1990-2022

    No full text

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore