1,935 research outputs found
Power calculations for isentropic compressions of cryogenic nitrogen
A theoretical analysis was made of the power required for isentropic compressions of cryogenic nitrogen in order to determine the extent to which the drive power for cryogenic tunnels might be affected by real-gas effects. The analysis covers temperatures from 80 to 310 K, pressures from 1.0 to 8.8 atm, and fan pressure ratios from 1.025 to 1.200. The power required to compress cryogenic nitrogen was found to be as much as 9.5 percent lower than that required to compress an ideal diatomic gas. Simple corrections to the ideal-gas values were found to give accurate estimates of the real-gas power values
Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures
The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas
Exosomes and Exosomal miRNA in Respiratory Diseases
Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases
Sparse approximation of multivariate functions from small datasets via weighted orthogonal matching pursuit
We show the potential of greedy recovery strategies for the sparse
approximation of multivariate functions from a small dataset of pointwise
evaluations by considering an extension of the orthogonal matching pursuit to
the setting of weighted sparsity. The proposed recovery strategy is based on a
formal derivation of the greedy index selection rule. Numerical experiments
show that the proposed weighted orthogonal matching pursuit algorithm is able
to reach accuracy levels similar to those of weighted minimization
programs while considerably improving the computational efficiency for small
values of the sparsity level
The cryogenic wind tunnel concept for high Reynolds number testing
Theoretical considerations indicate that cooling the wind-tunnel test gas to cryogenic temperatures will provide a large increase in Reynolds number with no increase in dynamic pressure while reducing the tunnel drive-power requirements. Studies were made to determine the expected variations of Reynolds number and other parameters over wide ranges of Mach number, pressure, and temperature, with due regard to avoiding liquefaction. Practical operational procedures were developed in a low-speed cryogenic tunnel. Aerodynamic experiments in the facility demonstrated the theoretically predicted variations in Reynolds number and drive power. The continuous-flow-fan-driven tunnel is shown to be particularly well suited to take full advantage of operating at cryogenic temperatures
Recommended from our members
What Immunological Defects Predispose to Non-tuberculosis Mycobacterial Infections?
Nontuberculous mycobacteria (NTM) are categorized as one of the large and diverse groups of environmental organisms which are abundant in water and soil. NTM cause a variety of diseases in humans that mainly affect the lung. A predisposition to pulmonary NTM is evident in patients with parenchymal structural diseases including bronchiectasis, emphysema, tuberculosis (TB), cystic fibrosis (CF), rheumatologic lung diseases and other chronic diseases with pulmonary manifestations. Lung infections are not the only consequences of being infected by NTM as they can also infect skin and soft tissue and may also cause lymphadenitis (predominantly in young children) and disseminated disease in human immunodeficiency virus (HIV)-infected patients or those with severely compromised immune system. NTM are also found in many subjects without any known risk factors. Although the recent advances in imaging and microbiologic techniques including gene sequencing have provided a better view of the problems caused by NTM and has enhanced our understanding of the disease, many uncertainties regarding the immunologic response to NTM still exist. There is also limited data on the immunogenetics of NTM infection. Here, the authors reviewed the main immunogenetic defects as well as other immunological conditions which are associated with an increased the risk of NTM infections
Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel
The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems
Reduced Phagocytic Capacity of Blood Monocyte/Macrophages in Tuberculosis Patients Is Further Reduced by Smoking.
Tuberculosis (TB) and tobacco use are two major alarming global health issues posing immense threats to human populations. Mycobacterium tuberculosis (MTB) by activation of macrophages could induce the sequences of cells activation and releases of inflammatory cytokines such as CXCL-8, Il-12 and TNF-α which in turn induces the immune system network. However no information is available on other activity of cells by MTB and smoking. In the current study we aimed to investigate the serum levels TNF-a, CXCL-8 and phagocytosis capacity in tuberculosis patients with and without smoking. 103 subjects entered the study including 61 new diagnosed pulmonary TB patients (23 smokers and 38 nonsmokers) and 42 control healthy subjects. The phagocytosis of fluorescein isothiocyanate dextran (FITC-dextran) in blood monocytes/macrophages through flowcytometry was assessed. Serum levels of TNF-a and CXCL-8 were analyzed by ELISA methods. A lower percentage of cells from TB patients who smoked [50.29% (43.4-57.2), p<0.01] took up FITC-dextran after 2h compared to non-smoking TB subjects [71.62% (69.2-74.1)] and healthy cases [97.45% (95.9-99.1). Phagocytic capacity was inversely correlated with cigarette smoking as measured by pack years (r=-0.73, p<0.001). The serum levels of TNF-a and CXCL-8 were significantly higher in the TB patients who smoked compared to the TB non-smoker group (p<0.001, p<0.01 respectively). Blood monocytes/macrophages from TB patients have reduced phagocytic capacity which is further reduced in TB patients who smoke. Smoking enhanced serum levels of TNF-a and CXCL-8 suggesting a greater imbalance between the proinflammatory and anti-inflammatory factors in these patients
Quality in coagulation and haemostasis testing
The essential elements of a quality program, specifically internal quality control (IQC) and external quality assurance (EQA), should be applied to each laboratory assay performed in order to ensure test result accuracy and precision. The coagulation laboratory plays an important role in the diagnosis and treatment of individuals with bleeding or clotting (i.e., thrombotic) disorders. Test methodologies used to assess common disorders or diseases of haemostasis are reviewed as well as the clinical relevance of each assay. The preanalytical phase of testing offers the greatest opportunity for introducing result error in the haemostasis laboratory and it is therefore imperative that samples are properly collected, transported and stored. Samples for haemostasis testing should be collected in 3.2% sodium citrate at a 9:1 blood to anticoagulant ratio and maintained at room temperature until processed. Some test processes such as platelet function testing have special processing and testing requirements. For plasma-based tests, centrifugation to obtain platelet poor plasma and testing should ideally be completed within 4 hours or the plasma frozen. IQC must be performed with each assay, at appropriate levels of the analyte and at appropriate time intervals as a means for assessing ongoing assay performance. EQA, a peer group assessment process that is supplementary to IQC, offers in addition the opportunity for evaluation of long-term performance of laboratories, including comparisons with like and unlike methodologies, and often serves as an educational resource. Participation in an EQA program is often a requirement of laboratory accreditation and there are a multitude of EQA organizations that offer programs specific to haemostasis testing with international programs providing assessment of the more specialized haemostasis assays. These programs provide invaluable information on assay specific diagnostic error rate, assay precision, accuracy, sensitivity and assessment of overall assay performance. The incorporation of IQC and EQA into a laboratory program can not only assist in the assurance that testing is reliable and accurate but also improve the quality of the testing
Full-scale aircraft simulation with cryogenic tunnels and status of the National Transonic Facility
The effect of thermal and caloric imperfections in cryogenic nitrogen on boundary layers was determined to indicate that in order to simulate nonadiabatic laminar or turbulent boundary layers in a cryogenic nitrogen wind tunnel, the flight enthalpy ratio, rather than the temperature ratio, should be reproduced. The absence of significant real gas effects on both viscous and inviscid flows makes it unlikely that there will be large real gas effects on the cryogenic tunnel simulation of shock boundary layer interactions or other complex flow conditions encountered in flight. Condensation effects were studied to determine the minimum usable temperature and indicated that under most circumstances free stream Mach number rather than maximum local Mach number determines the onset of condensation effects
- …