218 research outputs found

    Sojourn time in a single server queue with threshold service rate control

    Get PDF
    We study the sojourn time in a queueing system with a single exponential server, serving a Poisson stream of customers in order of arrival. Service is provided at low or high rate, which can be adapted at exponential inspection times. When the number of customers in the system is above a given threshold, the service rate is upgraded to the high rate, and otherwise, it is downgraded to the low rate. The state dependent changes in the service rate make the analysis of the sojourn time a challenging problem, since the sojourn time now also depends on future arrivals. We determine the Laplace transform of the stationary sojourn time and describe a procedure to compute all moments as well. First we analyze the special case of continuous inspection, where the service rate immediately changes once the threshold is crossed. Then we extend the analysis to random inspection times. This extension requires the development of a new methodological tool, that is "matrix generating functions". The power of this tool is that it can also be used to analyze generalizations to phase-type services and inspection times.Comment: 16 pages, 13 figure

    Local stability in a transient Markov chain

    Full text link
    We prove two propositions with conditions that a system, which is described by a transient Markov chain, will display local stability. Examples of such systems include partly overloaded Jackson networks, partly overloaded polling systems, and overloaded multi-server queues with skill based service, under first come first served policy.Comment: 6 page

    FCFS Parallel Service Systems and Matching Models

    Get PDF
    We consider three parallel service models in which customers of several types are served by several types of servers subject to a bipartite compatibility graph, and the service policy is first come first served. Two of the models have a fixed set of servers. The first is a queueing model in which arriving customers are assigned to the longest idling compatible server if available, or else queue up in a single queue, and servers that become available pick the longest waiting compatible customer, as studied by Adan and Weiss, 2014. The second is a redundancy service model where arriving customers split into copies that queue up at all the compatible servers, and are served in each queue on FCFS basis, and leave the system when the first copy completes service, as studied by Gardner et al., 2016. The third model is a matching queueing model with a random stream of arriving servers. Arriving customers queue in a single queue and arriving servers match with the first compatible customer and leave immediately with the customer, or they leave without a customer. The last model is relevant to organ transplants, to housing assignments, to adoptions and many other situations. We study the relations between these models, and show that they are closely related to the FCFS infinite bipartite matching model, in which two infinite sequences of customers and servers of several types are matched FCFS according to a bipartite compatibility graph, as studied by Adan et al., 2017. We also introduce a directed bipartite matching model in which we embed the queueing systems. This leads to a generalization of Burke's theorem to parallel service systems
    • …
    corecore