

FCFS parallel service systems and matching models

Citation for published version (APA):
Adan, I., Kleiner, I., Righter, R., & Weiss, G. (2018). FCFS parallel service systems and matching models.
Performance Evaluation, 127-128, 253-272. https://doi.org/10.1016/j.peva.2018.10.005

DOI:
10.1016/j.peva.2018.10.005

Document status and date:
Published: 01/11/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.peva.2018.10.005
https://doi.org/10.1016/j.peva.2018.10.005
https://research.tue.nl/en/publications/caa6b1e9-edd9-43a0-bbe6-4301b1da955f

FCFS Parallel Service Systems and Matching Models

Ivo Adana, Igor Kleinerb,1, Rhonda Righterc, Gideon Weissb,1,∗

aEindhoven University of Technology
bDepartment of Statistics, The University of Haifa, Mount Carmel 31905, Israel

cUniversity of California at Berkeley

Abstract

We consider three parallel service models in which customers of several types are served by several types of

servers subject to a bipartite compatibility graph, and the service policy is first come first served. Two of the

models have a fixed set of servers. The first is a queueing model in which arriving customers are assigned to

the longest idling compatible server if available, or else queue up in a single queue, and servers that become

available pick the longest waiting compatible customer, as studied by Adan and Weiss, 2014. The second is

a redundancy service model where arriving customers split into copies that queue up at all the compatible

servers, and are served in each queue on FCFS basis, and leave the system when the first copy completes

service, as studied by Gardner et al., 2016. The third model is a matching queueing model with a random

stream of arriving servers. Arriving customers queue in a single queue and arriving servers match with the

first compatible customer and leave immediately with the customer, or they leave without a customer. The

last model is relevant to organ transplants, to housing assignments, to adoptions and many other situations.

We study the relations between these models, and show that they are closely related to the FCFS infinite

bipartite matching model, in which two infinite sequences of customers and servers of several types are matched

FCFS according to a bipartite compatibility graph, as studied by Adan et al., 2017. We also introduce a

directed bipartite matching model in which we embed the queueing systems. This leads to a generalization of

Burke’s theorem to parallel service systems.

Keywords: parallel service queueing systems; FCFS; redundancy service; infinite matching.

1. Introduction

We consider three parallel service models in which customers of several types, indexed by ci ∈ C =

{c1, . . . , cI} are served by several types of servers, indexed by sj ∈ S = {s1, . . . , sJ}, subject to a bipartite

compatibility graph, G = (S, C,E), E ⊆ S × C, such that (sj , ci) ∈ E if customer type ci can be served by

server type sj . We focus on the first come first served (FCFS) policy in all the models, i.e. customers are5

prioritized by their order of arrival, and servers are prioritized by the order in which they become available.

∗Corresponding author
Email addresses: iadan@win.tue.nl (Ivo Adan), igkleiner@gmail.com (Igor Kleiner), rrighter@ieor.berkeley.edu

(Rhonda Righter), gweiss@stat.haifa.ac.il (Gideon Weiss)
1Research supported in part by Israel Science Foundation Grant 286/13.

Preprint submitted to Elsevier August 28, 2018

Two of the models have a fixed set of servers, while the third model has a random stream of arriving servers.

Briefly stated the models are as follows:

- FCFS-ALIS Parallel Queueing Model: There are J servers of types S and a stream of customers of types C.

An arriving customer is assigned to the longest idle server which is compatible with it (ALIS - assign longest10

idle server) if such is available, or else it joins the queue of waiting customers. A server that completes a

service picks up the longest waiting customer which is compatible with it (FCFS), if such is available, or

else it joins the queue of idle servers. This model was studied by Adan and Weiss [1].

- A Redundancy Service Model: There are J servers of types S, each with his FCFS queue, and a stream

of arriving customers of types C. An arriving customer splits upon arrival into several copies that join the15

queues of the servers which are compatible with it. Service of a customer can then proceed simultaneously

at several compatible servers. The customer and all its copies leave the system when the first of its copies

completes service. This model was studied by Gardner et al. [2].

- A Parallel FCFS Matching Queue: There is an arrival stream of customers of types C, and an independent

arrival stream of servers of types S. When a customer arrives it joins a queue of customers waiting for service.20

When a server arrives it scans the queue of customers and matches with the longest waiting customer that

is compatible with its type, and the matched customer then leaves the system with the server. If the server

does not find a match it leaves immediately without a match.

The matching queue model is relevant to many types of service systems: It can describe organ transplants,

where patients are waiting to receive organs, and donated organs arrive in a random stream, and organs are25

assigned to compatible recipients in FCFS order, or are lost if no compatible recipient is waiting [3]. It can

also describe an adoption process, where families are waiting for available babies to be adopted (this may

only be approximate since unmatched babies do not disappear). It was used to model assignment of project

houses to families in Boston public housing, by Kaplan [4, 5]. Another application is to call centers with

inbound and outbound calls, where differently skilled agents (servers) start outbound calls if there are no30

waiting inbound calls that match their skill sets. Here the state would be the set of customers waiting in the

queue, and would not include those in service. Our matching queue model, although it seems very relevant

to the study of organ transplants and to various other systems, has not, to the best of our knowledge, been

analyzed in any level of detail.

We assume Poisson arrivals and exponential server-dependent service times for all three models so that35

their evolution is Markovian and can be described by various discrete-space continuous-time Markov chains.

These models are closely related to a fourth model:

- The FCFS infinite bipartite matching model: This was introduced in [6, 7] and studied in more detail recently

by Adan, Busic, Mairesse and Weiss [8]. In this model there are two infinite sequences, drawn independently,

one from C, the other from S, and the two sequences are then matched FCFS according to the compatibility40

graph G. This model is much simpler than either of the above models since it does not involve arrival times

and service times, and servers and customers play a completely symmetric role.

2

In this paper we explore the relations among the three service models, and their connections to the FCFS

infinite matching model. Our results here are:

- The continuous-time Markov chains that describe all three service models share the same stationary distri-45

bution. This leads the way to comparing their performance measures.

- We note that the redundancy service model and the matching queue are equivalent, in that they share the

same continuous-time Markov chain.

- We compare the performance of the Redundancy Service model and the FCFS-ALIS model, and consider

when either should be preferred. In particular we study their performance for the ‘N’-system (see Figure 5,50

Section 4), and obtain sharp stochastic bounds on the difference in the number in queue for each policy.

- We introduce a new discrete FCFS infinite matching model, which we call the FCFS infinite directed match-

ing model, that is similar to the model of [8].

- We derive properties of this new FCFS infinite directed matching model.

- We embed the three service models in the infinite directed bipartite matching model.55

- We obtain a version of Burke’s Theorem for the redundancy service and for the matching queue systems.

For related work, see Ayesta et al., [9].

The rest of the paper is structured as follows: In Section 2 we describe the three models, and in Section 3

we compare their performance. In Section 4 we study the performance of the ‘N’-system under FCFS-ALIS

and under Redundancy Service, and present computational and simulation results. In Section 5 we describe60

the relevant properties of the FCFS infinite bipartite matching model. In Section 6 we introduce the new

FCFS infinite directed matching model, and derive properties of the process. In Section 7 we show how to

embed the three service models in this new matching model, and discover some surprising consequences of

this embedding. We complete the proofs of our results in appendices.

Notation65

We let S(ci) denote the subset of server types compatible with ci, and C(sj) denote the subset of customer

types compatible with sj . For C ⊂ C, S ⊂ S we let S(C) =
⋃
ci∈C S(ci), C(S) =

⋃
sj∈S C(sj), and denote by

U(S) = (C(Sc))c those customer types that are compatible only with server types in S.

We associate with ci a rate λci , and with sj a rate µsj ; these are rates for exponential distributions. We

also let λ̄ =
∑I
i=1 λci and µ̄ =

∑J
j=1 µsj . For subsets C ⊂ C, S ⊂ S we let λC =

∑
ci∈C λci , µS =

∑
sj∈S µsj .70

In what follows we will denote quantities related to the FCFS-ALIS model by a superscript q, those related

to the Redundancy Service model by a superscript r, and those related to the Matching model by a superscript

m. In addition, we denote quantities related to the FCFS infinite bipartite matching model by a superscript

∞, and those related to the FCFS infinite directed matching model by a superscript ↓∞.

3

2. The Service Models75

2.1. A stability condition

Theorem 2.1. All three service models are stable, in the sense that Markov chains describing them are ergodic,

if and only if the following condition holds:

λC < µS(C) for every C ⊆ C. (1)

Proof. The proof for the FCFS-ALIS system is given in [1] Theorem 2.1. The proof for the redundancy system

is given in [2], Theorem 1. The proof for the matching system follows from Theorem 3.1 later in this paper.

The conditions for stability can also be verified from the solutions to the balance equations, given in the

following Theorems 2.2–2.5. It is easy to see that the solutions converge if and only if (1) holds.80

Figure 1 illustrates the compatibility graph for an example we will use throughout the paper. In this

example there are 3 types of customers and 3 types of servers, customers of type c2 (type c3) can only be

served by server of type s2 (type s3), while customers of type c1 can be served by all types of servers. A

variant of this model (without s1) is referred to in the literature as the ‘W’-model.

c1c2 c3

s3s2 s1

Figure 1: Compatibility graph for customer and server types

The stability condition for this example is:

λ2 < µ2, λ3 < µ3, λ̄ < µ̄.

2.2. The FCFS-ALIS parallel queueing model85

Customers arrive in independent Poisson streams, with rate λci for type ci. There are J servers of types

{s1, . . . , sJ}, and service by server sj is exponential with rate µsj . The service policy as described in the

introduction is FCFS-ALIS. Figure 2 illustrates a possible state for our example. In this figure all customers

c1 c2c2c2 c2 c3 c3
s3s2 s1

∗

Figure 2: A current state under FCFS-ALIS

in the system are displayed in order of arrival, with earlier arrivals more to the left. Customers in service are

shown together with their server. The oldest customer in the system is of type c1 and it is served by server90

s2, server s3 is serving a customer of type c3 after skipping two incompatible customers of type c2. Server s1

is idle. In the future, new customers will arrive from the right and join the end of the queue, with or without

4

a compatible server, and on completion of service a customer departs, and the server moves to the right and

scans waiting customers until he find a compatible customer or else he joins the end of the queue of idle servers

.95

In [1] the system is described by the process Y q(t) = (S1, n1, . . . , Si, ni, Si+1, . . . , SJ) where S1, . . . , SJ is

a permutation of the servers, servers S1, . . . , Si are busy with S1 serving the oldest customer in the system, S2

has skipped n1 customers and is serving the second oldest customer currently in service, and so on. nj is the

number of skipped customers between Sj and Sj+1. The remaining servers, Si+1, . . . , SJ are idle, ordered by

length of time they were idle, with SJ the longest idle. This describes the system at time t. Adan and Weiss100

proved:

Theorem 2.2 (Adan and Weiss [1]). The process Y q(t) is a continuous-time discrete state Markov chain. It

is ergodic if and only if (1) holds. Its stationary distribution is given, up to a normalizing constant, by

P q(S1, n1, . . . , Si, ni, Si+1, . . . , SJ) ∝
∏i
j=1

(λU({S1,...,Sj}))
nj

(µ{S1,...,Sj})
nj+1

×
∏J
j=i+1

1
λC({Sj,...,SJ})

(2)

Adan and Weiss [1] also calculated the normalizing constant.

We introduce an alternative process to describe the system, Xq(t) = (c1, c2, . . . , cL, s1, . . . , sK) where c`105

is the random type of the `th oldest customer in the system that is waiting and has not started service yet,

and sk is the type of the kth longest idling server in the system, all this at time t. Note that L, the number

of waiting customers, corresponds to n1 + · · · + ni of Y q(t), and can take any value ≥ 0, while s1, . . . , sK

correspond to SJ , . . . , Si+1 of Y q(t), which is the ordered subset of idle servers, with no replications, so that

K ≤ J . We then have:110

Theorem 2.3. The process Xq(t) is a continuous-time discrete state Markov chain. It is ergodic if and only

if the stability condition (1) holds. Its stationary distribution is given, up to a normalizing constant, by:

P q(c1, c2, . . . , cL, s1, . . . , sK) ∝
∏L
`=1

λ
c`

µS({c1,...,c`})

×
∏K
k=1

µ
sk

λC({s1,...,sk})
(3)

The proof of this theorem, by partial balance, appears in Appendix A. In particular, the following corollary

is immediate:

Corollary 1. The process Xq(t), conditional on the event that all servers are busy, has the stationary distri-115

bution, up to a normalizing constant, given by:

P q(c1, c2, . . . , cL | all busy) ∝
∏L
`=1

λ
c`

µS({c1,...,c`})
(4)

2.3. The redundancy service model

There are servers s1, . . . , sJ , and each of them has its own FCFS queue of compatible customers, and

service by server sj is exponential with rate µsj . Customers arrive in independent Poisson streams, with rate

5

λci for customers of type ci. Each arriving customer, upon arrival, splits into copies of the same type, and120

one copy joins the queue of each of the servers with which it is compatible. Service of a customer can then be

performed at several compatible servers simultaneously. The customer departs from the system, with all its

copies, at the instant at which service of one of its copies is complete.

Figure 3 illustrates a possible state for our example. In it we display the list of customer types, in order of

c1 c1c2 c1 c2c3

s2

s1

s3

c1

c1

c1

c2

c3

c4

c4

c4

c5 c6

c6

c6

Figure 3: A current state with redundant queueing

arrival, on the right side, and on the left side are the servers and their queues. The first customer, c1 (where125

the superscript 1 indicates his place in the sequence of customers in the system) is of type c1, and is currently

being served simultaneously be all three servers. The second and third customers are of types c2 and c3 and

queue up for servers s2, s3 respectively. The fourth and sixth customer, c4, c6 are again of type c1 and queue

up at all three servers.

Gardner et al. [2] have studied this system and defined the following process to describe it: Xr(t) =130

(c1, . . . , cL), where c1, . . . , cL are the types of all the customers in the system at time t, ordered by their

arrival times, with c1 the oldest. They have shown:

Theorem 2.4 (Gardner, Zbarsky, Doroudi, Harchol-Balter, Hyytia and Scheller-Wolf [2]). The process Xr(t)

is a continuous-time discrete state Markov chain. It is ergodic if and only if the stability condition (1) holds.

Its stationary distribution is given, up to a normalizing constant, by:135

P r(c1, c2, . . . , cL) ∝
∏L
`=1

λ
c`

µS({c1,...,c`})
(5)

2.4. The FCFS parallel matching queue

Customers of various types arrive in independent Poisson streams of rates λci and queue up in order of

arrival. Servers of various types arrive in independent Poisson streams of rates µsj . An arriving server scans

the queue of customers and matches with the longest waiting customer that is compatible with it, and the

two leave the system immediately. If the server does not find a compatible customer in the queue it leaves140

immediately without a customer.

Figure 4 illustrates a possible history of this system, for our example. The figure shows a sequence of

c3c1 c1c2 s3s2 s1
Figure 4: A partial history of the matching queue

customers and servers specified by their types, ordered in the order of arrival from left to right. A customer of

6

type c1 arrived first, followed by a customer of type c2. Next a server of type s2 arrived and was immediately

matched to the first customer and they departed together. Next a server of type s3 arrived and left immediately145

without a match. This was followed by a customer of type c1, then a customer of type c3 and finally by a

server of type s1 that matched immediately with the third customer, of type c1, and both departed. At this

point in time there was a queue of two customers, the earlier of type c2, the later of type c3.

We describe this system by the process Xm(t) = (c1, . . . , cL), where there are L customers in total, their

types (random) are c1, . . . , cL, ordered in order of arrival, with c1 the longest waiting, and the time is t.150

Theorem 2.5. The process Xm(t) is a Markov chain. It is ergodic if and only if the stability condition (1)

holds, and its stationary distribution is given, up to a normalizing constant, by:

Pm(c1, . . . , cL) ∝
∏L
`=1

λ
c`

µS({c1,...,c`})
(6)

The proof of this theorem is identical to the proof of Theorem 2.4. It also follows directly from Theorem

3.1.

3. Comparison of the three service models155

As we see from Theorems 2.4, 2.5 and Corollary 1, all three parallel service systems are associated with

a Markov chain with the same stationary distribution. Furthermore this stationary distribution is similar to

that of the FCFS infinite matching model of [6, 7, 8] that we will describe in Section 5. We now explore the

relations among these models.

3.1. Equivalence of the redundancy service system and the matching queue160

Note that although the redundancy system can have idle servers, and the matching queue cannot, the

state of the redundancy system is completely determined by the sequence of customers in the system; servers

are idle at a given time if there are no compatible customers in the system at that time. We will show that

the matching and redundancy queues are sample-path equivalent in the sense that if we start them with the

same customer state, and we couple the customer arrival processes in the two queues, and we couple potential165

service completions in the redundancy queue with service arrivals in the matching queue, then the sample

paths for the state processes of the two systems will be identical, with probability one.

Theorem 3.1. The redundancy service system and the matching queue are equivalent in the sense that the

processes Xr(t) and Xm(t) are sample path equivalent. In particular this means that for each customer, the

sojourn time in the system is the same for both models, so the mean sojourn times are the same for each170

customer type.

Proof. Consider the situation at time t where the customers in the both systems, in order of arrival, are of types

c1, . . . , cL, i.e. Xr(t) = Xm(t) = (c1, . . . , cL). To show that the two systems have the same Markov chain, we

will show that all the transition rates are the same. Transitions are of two kinds, arrivals or departures. An

7

arrival of a customer of type ci will occur at rate λci , and this customer then joins the queue as cL+1 = ci in175

both systems.

Consider now departures. We will compare the departure rates of each of the customers currently in the

system. If S(c`)\S(c1 . . . , c`−1) = ∅ then the departure rate for c` in both systems will be 0: in the redundancy

system, all the servers that can serve c` are currently serving customers that are earlier in the queue (some

of the earlier customers may be served by several servers simultaneously), and in the matching system, any180

arrival of a server that can match with c` will in fact match to an earlier customer. On the other hand, if

sj ∈ S(c`)\S(c1 . . . , c`−1) 6= ∅, then in the redundancy system, customer c` will be at the head of the line

for server sj and will be in service, and in the matching system an arrival of a server of type sj will result

in matching with c` and its departure. Hence we have shown that departure of customer c` occurs in both

systems at rate µS(c`)\S(c1...,c`−1).185

This completes the proof. Note also that the total rate of departures in both systems is µS(c1,...,c`). In the

redundancy system servers S(c1, . . . , c`) are all busy, while the remaining servers are idle, and in the matching

system any arrival of a server of any type in S(c1, . . . , c`) will result in a matching and a departure, while an

arrival of a server of type sj 6∈ S(c1, . . . , c`) will not result in a departure.

190

3.2. Comparing the FCFS-ALIS and the redundancy service systems

In contrast, the situation is different when we compare the FCFS-ALIS system with the redundancy system.

We list some points for comparison:

- The process Xq(t)
∣∣all busy and Xr(t) have the same stationary distribution, but Xr(t) includes all customers

in the system, those waiting and those being served, while Xq(t) only includes waiting customers, so there195

is an additional set of customers which are currently in service in the FCFS-ALIS system.

It is in fact shown in [10] that the stationary distribution of the types of customers that are in service in the

FCFS-ALIS system cannot be expressed in product form, even for the simple ‘N’ compatibility graph.

- One can regard the FCFS-ALIS system also as a system in which customers split on arrival into several

copies that queue up at all the compatible servers, as in the redundancy queue. However, at the instant that200

service of one copy starts, all the other copies disappear. This happens either when the customer has been

waiting at several queues, and reaches the server in one of these queues, or when on arrival finds several

compatible servers, in which case it will be processed by the longest idle server, so there is no simultaneous

processing.

- It is worth mentioning that the FCFS-ALIS system is equivalent to a system in which customers have full205

information about all the processing times in the system, and each arriving customer joins the compatible

server with the smallest workload. This join the smallest workload policy (JSW) leads to a Nash equilibrium

determined by selfish customers.

- With the same set of customers c1, . . . , cL, and the same set of idle servers s1, . . . , sK in the system, under

FCFS-ALIS each busy server serves a different customer, while in the redundancy system different servers210

8

may serve the same customer simultaneously. Therefore, although the stationary distributions of Xq(t)|busy

and Xr(t) are the same, they are not sample path equivalent.

- Because all processing times are exponentially distributed, there is no loss of processing time when a customer

is served simultaneously by more than one server. In fact, if a set of servers are processing jobs, the next

service completion will be at the same time whether they work on different customers or are processing the215

same customer simultaneously.

- If in the two systems there is the same set of customers (both waiting and in service), then the number

of busy servers in the redundancy system is greater than or equal to the number of busy servers in the

FCFS-ALIS systems, because simultaneous service is allowed under the redundancy system.

- Under the Redundancy service policy flexible customers have an advantage over less flexible customers. As220

a result, the composition of customers in the system under Redundancy service may include more inflexible

and fewer flexible customers than under FCFS-ALIS policy. This may result in forced idleness when too

many inflexible customers accumulate, and there are no flexible customers left in the system.

The last two considerations indicate that comparison of performance of the two service policies may depend

on the parameters of the system, such as workloads and service rates. In the next section we take a closer225

look at this question through a detailed study of the special case of the ‘N’-system.

4. A comparison of FCFS-ALIS and Redundancy Service for the ‘N’-System

In this section, we compare the performance of the FCFS-ALIS policy and the Redundancy Service policy

for the ‘N’-system. In the comparison of the expected sojourn times and number of customers in steady state

under the two policies, we find that neither policy dominates the other. We then consider a coupled realization230

of both systems, and analyze how the sample paths under the two policies differ, and prove a theorem on the

difference. We also present some simulation results that illustrate typical behavior in light traffic and in heavy

traffic.

The ‘N’-System is illustrated in figure 5. There are two servers and two customer types. Type 1 customers

arrive at rate λ1 and are flexible, and can be served by either server, type 2 customers arrive at rate λ2 and235

can only be served by server 2. Server 2 is flexible and can serve both types of customers, at rate µ2, while

server 1 can only serve type 1 customers, at rate µ1. Recall that λ̄ =
∑I
i=1 λci and µ̄ =

∑J
j=1 µsj . We assume

that λ2 < µ2 and λ̄ < µ̄.

c1 c2

s2s1

λ1 λ2

µ2µ1

Figure 5: The ‘N’-system

9

The sojourn time for the ‘N’-system under the Redundancy Service policy is derived in Theorems 2 and 3

of [2]. From this we obtain the expected sojourn times for type 1 and type 2 customers:

E(W r
1) =

1

µ̄− λ̄
, E(W r

2) =
1

µ2 − λ2
− 1

µ̄− λ2
+

1

µ̄− λ̄
.

The expected waiting times and the service times for type 1 and type 2 customers under the FCFS-ALIS

policy can be calculated using results of section 4 in [10] (see also [1]). Using these results we obtain first the

expected waiting times V q1 , V
q
2 , and then the expected service times Sq1 , S

q
2 . The waiting times are:

E(V q1) = B 1
(µ̄−λ̄)2

(
1
µ1

+ 1
µ2−λ2

)
,

E(V q2) = B
(

1
λ1(µ2−λ2)2 + 1

µ1(µ̄−λ̄)2
+ 1

(µ2−λ2)2(µ̄−λ̄)
+ 1

(µ2−λ2)(µ̄−λ̄)2

)
where

B =

(
1

λ1λ̄
+

1

λ̄2
+

1

µ1λ̄
+

1

λ1(µ2 − λ2)
+

1

µ1(µ̄− λ̄)
+

1

(µ2 − λ2)(µ̄− λ̄)

)−1

.

To calculate the service times of customers of type 1, we note that the total stationary probability that servers

1 and 2 are busy, denoted here as bq1, b
q
2, are given [1] by:

bq1 = P (server 1 busy) = B
(

1
µ1

1
λ̄

+ 1
µ1

1
µ̄−λ̄ + 1

µ2−λ2

1
µ̄−λ̄

)
,

bq2 = P (server 2 busy) = B
(

1
µ2−λ2

1
λ1

+ 1
µ1

1
µ̄−λ̄ + 1

µ2−λ2

1
µ̄−λ̄

)
.

and therefore the stationary probability that server 2 is working on customer of type 1 is

P (server 2 working on a customer of type 1) = bq2 −
λ2

µ2
.

From these we get expressions for the expected service times of the customers in steady state:

E(Sq1) =
bq1

µ1b
q
1 + µ2(bq2 − λ2

µ2
)

+
bq2 − λ2

µ2

µ1b
q
1 + µ2(bq2 − λ2

µ2
)
, E(Sq2) =

1

µ2
.

The expected number of customers in the system can now also be obtained, by Little’s Law. This enables240

us to compare expected sojourn times and number in system under the two policies. In the following Figure

6 we plot the difference in expected number in system under the two policies. It is seen from the plots that

one policy does not always dominate the other.

To learn more about the behavior of the ‘N’-system under the two policies, we now study coupled versions

of the two systems, which we define as follows: We have 4 independent Poisson processes of rates λ1, λ2, µ1, µ2245

which are shared by the two systems. The first two give the arrival times of the two types of customers. The

second two give the sequences of potential service completions of the two servers. When a potential service

is completed at either of the systems, if a customer is in service at that server, the customer leaves. In the

system with redundant service, if both servers are serving the same customer, then that customer will leave if

either server has a potential service completion. If the server is idle at a service completion there is no change250

10

θ = 1
ρ1 = 0.8

Figure 6: Plots of E(Nr
1 +Nr

2 −Nq
1 −Nq

2) as a function of ρ1 = λ1
µ1
, ρ2 = λ2

µ2
, θ = µ1

µ2

in the state. This coupling means that arrival times and potential service completions occur at the same times

in both systems, but we may have, for a potential service completion, that the type of customer that leaves is

different, or even that under one policy there is a departure, and under the other policy there is no departure.

Let Nq, Nr denote the random variables counting the total number of customers in each of the coupled

systems, when the systems are in steady state, and let Nq
1 , N

r
1 , N

q
2 , N

r
2 , count the number of customers of255

each type.

Theorem 4.1. For the coupled systems in steady state, the number of customers in system under FCFS-ALIS

can exceed the number of customers in system under redundancy service by no more than 1. On the other

hand, the number of customers in system under redundancy service minus the the number of customers in

system under FCFS-ALIS can be unboundedly large. This holds for the total number as well as for the number

of customers of each type. Stated in terms of the distributions,

Nr ≥ST Nq − 1, Nr
1 ≥ST N

q
1 − 1, Nr

2 ≥ST N
q
2 − 1. (7)

The proof of this theorem is based on coupling, and is given in Appendix D.

It is instructive to explain under what conditions either policy may be advantageous. In light traffic, when

the servers are not overloaded, the redundant system may be preferred, since there will be many occasions

when there is a single type 1 customer in the system, in which case under FCFS-ALIS one of the servers is260

idle, while under Redundancy Service both servers are working.

This is illustrated in the following coupled sample realization in Figure 7. The parameters for this example

are:

Example 1: λ1 = 3, λ2 = 2, µ1 = 6, µ2 = 6, E(Nr
1 +Nr

2) = 1.014, E(Nq
1 +Nq

2) = 1.194.

We plot the number of customers Nr
1 + Nr

2 − N
q
1 − N

q
2 . We see that for an appreciable fraction of the time

the difference equals −1.

11

Figure 7: Example 1: Difference in the number of customers for: λ1 = 3, λ2 = 2, µ1 = 6, µ2 = 6

On the other hand, when the flexible server 2 is heavily loaded by inflexible customers of type 2, then

whenever server 2 is “helping” server 1 by serving a type 1 customer under Redundancy Service, customers of

type 2 accumulate, and so redundancy can have more congestion than FCFS-ALIS. This is clearly illustrated

in the following coupled sample realization in Figure 8.

Figure 8: Example 2: Difference in the number of customers for: λ1 = 2, λ2 = 145, µ1 = 3, µ2 = 150

12

Example 2: λ1 = 2, λ2 = 145, µ1 = 3, µ2 = 150, E(Nr
1 +Nr

2) = 35.375, E(Nq
1 +Nq

2) = 32.4993.

We see that the difference is positive most of the time and can be as high as 10. Note that in this case, if we

use dedicated service of customers of type 1 by server 1 only, and customers of type 2 by server 2 only, then265

E(N1) = 2, E(N2) = 29, i.e., flexibility hurts performance. Of course, under an optimal scheduling policy

(as opposed to FCFS), flexibility can only help. Gardner et al. [11] show that the optimal scheduling policy

prioritizes less flexible (type 2) customers.

5. The FCFS Infinite Bipartite Matching Model

We note that all three service models have similar stationary distributions. Furthermore, these distribu-270

tions are also similar to stationary distributions that were obtained for the infinite bipartite matching model

introduced by Kaplan, Caldentey and Weiss [6] and further studied in [7, 8]. We briefly describe the results

of [7, 8].

There are two independent doubly infinite series of customers . . . , c−2, c−1, c0, c1, c2, . . . drawn i.i.d. from

C according to the probabilities α, and of servers . . . , s−2, s−1, s0, s1, s2, . . ., drawn i.i.d. from S according to275

the probabilities β, and they are matched FCFS according to the compatibility graph G.

What we mean by FCFS is that if sn is matched with cm, then there is no earlier (unmatched) sk ∈ S(cm)

which is unmatched, and no earlier c` ∈ C(sn) which is unmatched. Figure 9 illustrates FCFS infinite bipartite

matching with the compatibility graph of Figure 1, for a window of the sequences. In this figure one customer

c1 c1 c1 c1c2 c2 c2c3

s3 s3s2 s2s2 s1 s1s1s1

Figure 9: FCFS infinite bipartite matching

and one server were matched to an earlier (left of the window) customer and server, and one customer and280

one server remain unmatched at the end of the window, and are matched to a later (right of the window)

customer and server.

Definition 1. We say that this system has complete resource pooling if the following equivalent conditions

hold for any S ⊂ S, S 6= ∅,S and C ⊂ C, C 6= ∅, C:

αC < βS(C), βS < αC(S), αU(S) < βS . (8)

The following theorem was proved by Adan et al. [8]:

Theorem 5.1 (Adan, Busic, Mairesse and Weiss [8]). If complete resource pooling (8) holds then almost surely

there exists a FCFS matching of the two sequences (such that no customers or servers are unmatched) and285

this matching is unique.

We define the following transformation on the matched sequences:

13

Definition 2. For given matched sequences, the exchange transformation exchanges the position, or index,

of each matched pair, so that if sn was matched to cm in the original system, then in the exchanged system

we have c̃n matched to s̃m. This defines a permutation of the original sequence . . . , c−2, c−1, c0, c1, c2, . . . to a290

new sequence . . . , c̃−2, c̃−1, c̃0, c̃1, c̃2, . . ., and the original sequence . . . , s−2, s−1, s0, s1, s2, . . . to a new sequence

. . . , s̃−2, s̃−1, s̃0, s̃1, s̃2,

Figure 10 illustrates the exchanged sequences obtained by the exchange transformation from the illustration

in Figure 9.

c2

s2

c1 c1 c1 c1c2 c2c3

s3 s3s2 s2s2 s1s1∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Figure 10: The exchange transformation applied to Figure 9

The following reversibility result is proved in [8]295

Theorem 5.2 (Adan, Busic, Mairesse and Weiss [8]). The exchanged sequences . . . , c̃−2, c̃−1, c̃0, c̃1, c̃2, . . .,

. . . , s̃−2, s̃−1, s̃0, s̃1, s̃2, . . ., are independent and each is i.i.d. from C and from S according to α, β. Further-

more, the original matching is now the almost surely unique FCFS matching of the exchanged sequences in

reversed time.

Using the reversibility, it is easy to obtain stationary distributions for several discrete time Markov chains300

associated with this system. We consider making all the FCFS matches of s`, ck for k, ` ≤ n, and define the

process X∞(n) = (ci1 , . . . , ciL , sj1 , . . . , sjL), where customers in positions i1, . . . , iL and servers in positions

j1, . . . , jL were left unmatched, and ci1 , . . . , ciL , sj1 , . . . , sjL are the types of these unmatched customers and

servers.

Theorem 5.3 (Adan, Busic, Mairesse and Weiss [8]). The process X∞(n) is a discrete time discrete state305

Markov chain. It is ergodic if and only if complete resource pooling condition (8) holds. Its stationary distri-

bution is given, up to a normalizing constant, by:

P∞(ci1 , ci2 , . . . , ciL , sj1 , . . . , sjL) ∝
∏L
`=1

α
ci`

βS({ci1 ,...,ci`})

×
∏L
`=1

β
sj`

αC({sj1 ,...,sj`})
(9)

We note the close resemblance of this formula to the stationary distributions given in (3), (5), (6).

6. A Novel FCFS Infinite Directed Matching Model

The similarity of the stationary distributions of the continuous time processes Xq, Xr, Xm and the FCFS310

infinite bipartite matching discrete time process X∞ suggests that they may be more closely related. In this

section we introduce a new FCFS infinite matching model. It is similar to the model of Section 5 and of

14

[6, 7, 8]. It is also related to the model studied in [12], and is even more closely related to Xq, Xr, Xm. We

use this new process to derive some more properties of Xq, Xr, Xm, in Section 7.

We consider a single infinite sequence of customers and servers, which is generated as follows: each suc-315

cessive item in the list is a customer of type ci with probability αci =
λci

λ̄+µ̄
, and it is a server of type sj

with probability βsj =
µsj

λ̄+µ̄
, and successive items in the sequence are independent. The result is a sequence

. . . , z1, z2, . . ., where each item zn indicates either a type of customer or a type of server. We then perform

FCFS matching of the customers and servers according to the compatibility graph G, utilizing only matches

of servers to earlier customers. This means in particular that a server zn = sj for which there is no earlier320

unmatched compatible customer will remain unmatched. We call this the FCFS single stream infinite directed

bipartite matching model, or directed matching model for short.

We define the discrete-time process X↓∞(n) to describe the matching process for the directed matching

model. Assume we have performed all the possible matches in the sequence . . . , z1, z2, . . . up to and including

zn. Then X↓∞(n) = (c1, . . . , cL) is the ordered list of the customers that are still unmatched.325

Theorem 6.1. X↓∞(n) is a discrete-time discrete-state Markov chain. It is ergodic if and only if the stability

condition (1) holds, and its stationary distribution, up to a normalizing constant, is given by:

P ↓∞(c1, . . . , cL) ∝
L∏
`=1

λc`

µS({c1,...,c`})
. (10)

The fraction of servers that remain unmatched is 1− λ̄
µ̄ .

Proof. It is seen immediately that the Markov chain X↓∞(n) is the jump chain of the process Xm(t). Fur-

thermore, the process Xm(t) has jumps in which its state changes, at the uniform rate of λ̄+ µ̄, irrespective

of the state. The theorem follows.

Remark: The fraction of unmatched servers of each type sj can be calculated from (10). It is the sum of330

P ↓∞(c1, . . . , cL) over all sequences c1, . . . , cL that contain only customers that are incompatible with sj .

We define a more detailed process to describe the dynamics of the FCFS infinite directed matching model.

The process U(n) = (u1, . . . , uK) records the ordered sequence of the unmatched customers as well as the

servers that are left unmatched between them, after all matches of customers and servers in the sequence

. . . , z1, z2, . . . up to and including zn have been made. We refer to U(n) as the augmented Markov chain of335

the infinite directed matching process. Here U(n) starts with the earliest customer that remained unmatched

up to zn, u1 ∈ C. If all customers up to zn have been matched we say that the matching is perfect, and we

define U(n) = ∅ (we also denote it by 0). Clearly by Theorem 6.1, if the stability condition (1) holds, then

U(n) is an ergodic Markov chain.

We now formulate two theorems for the FCFS infinite directed matching model. Their proofs are similar340

to the proofs of Theorems 5.1, 5.2 of Section 5, (they are Theorems 3 and 4 in Adan et al. [8]). Because there

are still some essential differences in the proofs, compared to [8], we include the proofs in Appendix B and

Appendix C.

15

Theorem 6.2. Let . . . , z−1, z0, z1, . . . be a sequence of customer and server types defined as above. If (1)

holds then almost surely there exists a directed FCFS matching of servers to cover all the customers, and this345

matching is unique.

We define an exchange transformation for the FCFS infinite directed matching model:

Definition 3. For the FCFS infinite directed matching model, if all matches were made on . . . , z−1, z0, z1, . . .,

we define the exchanged sequence . . . , z̃−1, z̃0, z̃1, . . . as follows: If zm = ci was matched to zn = sj, where

m < n, then in the exchanged sequence we will have z̃m = sj, z̃
n = ci. If zn = sj was unmatched, then350

z̃n = zn.

c3c1 c1c2 s3s2 s1

c3c1 c1c2 s3s2 s1

z1 z2 z3 z4 z5 z6 z7

!z1 !z2 !z 3 !z 4 !z5 !z6 !z 7

Figure 11: directed matching and its reversal

Figure 11 describes directed matching for a window of time in the doubly infinite sequence of customers

and servers on the top panel. In it, z3 = s2 is matched with earlier z1 = c1, and z7 is matched with z5, while

z2 = c2, z
6 = c3 are not yet matched, and z4 = s3 will remain unmatched for ever. On the bottom panel of

Figure 11 we see the exchange transformation of the top panel, with the matchings directed in reversed time.355

Theorem 6.3. The sequence . . . , z̃−1, z̃0, z̃1, . . . obtained from the sequence . . . , z−1, z0, z1, . . . by the exchange

transformation is an i.i.d. sequence. The unique directed matches for the new sequence performed in reversed

time, result in exactly the reversed matches of the original sequence, almost surely.

7. Embeddings and a Version of Burke’s Theorem

We have already noticed, and used it in the proof of Theorem 6.1, that the process X↓∞(n) is the jump360

process of the continuous-time matching queue process Xm(t). Likewise, by Theorem 3.1 it is the jump process

of Xr(t).

We now use this embedding to prove a version of Burke’s Theorem for the FCFS parallel service system

under the redundancy policy, and for the FCFS parallel servers matching queue. Our proof here is direct, and

follows from the reversibility property. An indirect proof of this result is givin by Bonald and Comte [13].365

Theorem 7.1. Let Dci(t), i = 1, . . . , I be the departure process of customers of type ci from the stationary

parallel FCFS Redundancy Service queue, or from the stationary parallel FCFS Matching queue (counting all

departures in (0, t]).

(i) Dci(t) are independent Poisson processes of rates λci .

16

(ii) The ordered sequence of customers in the system at time t for either system, given by Xm(t) or Xr(t),370

is independent of past departures, Dci(s), i = 1, . . . , I for all s < t.

Proof. We will use the reversibility result of X↓∞(n) in Theorem 6.3.

We consider a path of Xm(t), −∞ < t < ∞ (the same goes for Xr(t)). The sample path is determined

by the doubly infinite sequence of arriving customers and servers, . . . , z−1, z0, z1, . . ., and the path of the

independent Poisson process of rate λ̄+ µ̄, which determines the arrival time of zn at tn. The sequence then375

determines a sample path of the FCFS infinite directed bipartite matching process X↓∞(n), with the relation

that Xm(t) = X↓∞(n) in the interval [tn, tn+1). Consider now the FCFS infinite directed matching for the

sequence . . . , z−1, z0, z1, In the matching process, if zm = ci is matched to zn = sj where m < n, then a

customer of type ci arrived at time tm, and a server sj arrived at tn and was matched to that customer, so

the customer of type ci that arrived at time tm departed at time tn.380

Now we perform the exchange transformation, so we now have the exchanged sequence . . . , z̃−1, z̃0, z̃1,

We then proceed with FCFS directed matching for the exchanged sequence, in reverse order. By Theorem

6.3 in this FCFS directed matching in reverse order, the same pairs will be matched (almost surely), so now

z̃n = ci is matched with z̃m = sj .

Consider now the process Xm(t), and its jump process X↓∞(n). Take the exchange transformation of the385

sequence of FCFS directed matchings, reverse the discrete time, and perform FCFS directed matching, to

obtain the discrete time exchanged and reversed process
←−
X ↓∞(n), and using the reversed sequence of time

intervals between jumps in Xm(t), construct from
←−
X ↓∞(n) the continuous-time process

←−
Xm(t).

By Theorem 6.3, the stationary X↓∞(n) and the stationary
←−
X ↓∞(n) are stochastically identical. The

Poisson process of arrival with rates λ̄ + µ̄ is time reversible and so Xm(t) and
←−
Xm(t) are stochastically390

identical. in particular, the sequence of arrivals of
←−
Xm(t) consists of independent Poisson process of arrivals of

customers of type ci at rates λci , and the state of the process, Xm(t) is independent of the arrivals at all time

s > t. But these arrivals are exactly the departures of Xm(t) in reversed time. This completes the proof.

Corollary 2. Networks of parallel service systems under the redundancy service policy, as well as networks

of parallel matching queues have product form stationary distributions.395

Proof. This version of Burke’s Theorem, as given by Theorem 7.1, implies that the process X↓∞(n) is quasi-

reversible. It is proven in [14, 15] that networks of quasi reversible Markovian systems have a product form

stationary distribution.

Another consequence of the embedding is a relaxation of the Poisson-exponential assumptions.

Theorem 7.2. The stationary distribution of the FCFS matching queue Xm(t), at times t immediately fol-400

lowing transitions, remains the same as given in (6) if the arrivals of customers and servers are a general

stationary point process, as long as types of arrivals are i.i.d. so that each arrival is a customer of type ci with

probability
λci

λ̄+µ̄
, and it is a server of type sj with probability

µsj

λ̄+µ̄
.

17

Proof. Consider the FCFS matching queue model, when arrivals are a stationary point process, and the arrival

types are i.i.d. as above. Let tn, n = . . . ,−1, 0, 1, . . . denote the arrival times. Then at the times tn the ordered405

sequence of customers in the system, given by Xm(t2) is exactly the state of X↓∞(n), where in this FCFS

infinite directed matching model arrivals are i.i.d., and so the stationary distribution of X↓∞(n) is given by

(10), which is the same as (6). So the stationary distribution of Xm(t) at the times tn is given by (6).

7.1. Another Interpretation of the Matching Queue

In our description and interpretation of the parallel matching queue we thought of customers waiting for410

servers, and arriving servers match to the oldest waiting compatible customer, or are lost. This system is

stable when µ̄ > λ̄. It may describe a situation in which patients are waiting for a transplant of an organ, and

patients have enough patience to wait for the right organ to arrive, and the supply of organs is sufficient, but

organs cannot be conserved.

In reality the situation may be different, the organs may be conserved for a while, but there are more

patients than organs. So now λ̄ > µ̄, and patients may be lost. We now consider the following process

and policy: servers arrive and queue up waiting for customers, customers arrive, and each arriving customer

then matches to the longest waiting compatible server and leaves immediately, or if no compatible server is

found, the customer leaves immediately without a match. All we did in this model is to switch the roles of

customers and servers, and all the results of Sections 2.4 and 7 hold, with ci and sj switching roles. Denote

by Y m(t) = (s1, . . . , sL) the process that records the ordered sequence of available servers at time t, with s1

the longest waiting. Then the stationary distribution of Y m(t) is given by:

P (Y m(t) = s1, . . . , sL) ∝
L∏
`=1

µs`

λC({s1,...,s`})
. (11)

7.2. Embedding the FCFS-ALIS queues in an Infinite Matching Model415

The process Xq(t) can also be embedded in an infinite matching model, by considering the same sequences

. . . , z−1, z0, z1, . . ., but using a different matching mechanism: We now match each successive server zn = sj

to the earliest unmatched compatible customer zm = ci where m < k and k is the earliest position in the

sequence with k > n, zk = sj . If no such match exists, the server zn remains unmatched.

We define the process Xq∞(n) to describe the system after all possible matches that involve server zk and420

customer z` for all k, ` ≤ n have been made. Then Xq∞(n) = (c1, c2, . . . , cL, s1, . . . , sK). Here c1, c2, . . . , cL

are the types of the customers in positions ≤ n that are still unmatched, ordered as they appeared in the

sequence, and s1, . . . , sK are the types of servers in positions ≤ n that have not been matched but may still

be matched to a customer later in the sequence, ordered as they appeared in the sequence. Note that any of

c1, c2, . . . , cL are incompatible with any of s1, . . . , sK , and that the server types s1, . . . , sK are all different, so425

that K ≤ J .

One can see that this process is the discrete time jump process of Xq(t), and analogues of Theorems 6.1

and 6.2 hold.

18

Appendix: Completion of Proofs

Appendix A. FCFS-ALIS stationary distribution430

Proof of Theorem 2.3. The proof is by verifying that (3) satisfies partial balance. It is similar to the proof of

Theorem 2.2 given in [10, 1], and to the proof of Theorem 2.4 given in [2].

We consider a state x = (c1, . . . , cL, s1, . . . , sK). We list transitions in and out of the state x and their

rates:

(i) Transition out of x due to arrival of type ci that joins the queue, at rate λci , where ci 6∈ C({s1, . . . , sK}).435

(ii) Transition out of x due to arrival of type ci that matches to one of the idle servers, at rate λC({s1,...,sK}).

(iii) Transition out of x due to completion of service, where server type sj becomes idle, at rate: µsj , for

sj 6∈ S({c1, . . . , cL}).

(iv) Transition out of x due to completion of service and start of service of a waiting customer, at rate:

µS({c1,...,cL})440

(v) Transition into state x due to arrival of cL, at rate λcL .

(vi) Transition into state x due to an arrival that matched with idle server s∗ that was in position k + 1, at

rate: λC(s∗)\C({s1,...,sk}), where s∗ 6∈ S({c1, . . . , cL})

(vii) Transition into state x due to a service completion, and server becoming idle, at rate µsK .

(viii) Transition into state x due to a service completion, where a server is starting service of a customer c∗445

that was in position `+ 1, at rate: µS(c∗)\S({c1,...,c`}).

We now show by substitution of the conjectured values from (3), that partial balance equations hold.

• Balance of (iv) with (v):

P q(c1, . . . , cL, s1, . . . , sK)× µS({c1,...,cL}) =
L∏
`=1

λc`

µS({c1,...,c`})

K∏
k=1

µsk

λC({s1,...,sk})
× µS({c1,...,cL});

P q(c1, . . . , cL−1, s1, . . . , sK)× λcL =
L−1∏
`=1

λc`

µS({c1,...,c`})

K∏
k=1

µsk

λC({s1,...,sk})
× λcL .

• Balance of (ii) with (vii):

P q(c1, . . . , cL, s1, . . . , sK)× λC({s1,...,sK}) =
L∏
`=1

λc`

µS({c1,...,c`})

K∏
k=1

µsk

λC({s1,...,sk})
× λC({s1,...,sK});

P q(c1, . . . , cL, s1, . . . , s
K−1)× µsK =

L∏
`=1

λc`

µS({c1,...,c`})

K−1∏
k=1

µsk

λC({s1,...,sk})
× µsK .

19

• Balance of (i) with (viii):

For ci 6∈ C({s1, . . . , sK})

P q(c1, . . . , cL, s1, . . . , sK)× λci =
L∏
`=1

λc`

µS({c1,...,c`})

K∏
k=1

µsk

λC({s1,...,sk})
× λci ;

L∑
`=0

P q(c1, . . . c`, ci, c
`+1, . . . , cL, s1, . . . , sK)

×µS(ci)\S({c1,...,c`}) =

=

L∑
`=0

∏̀
j=1

λcj

µS({c1,...,cj})
× λci
µS({ci,c1,...,c`})

×
L∏

j=`+1

λcj

µS({ci,c1,...,cj})

K∏
k=1

µsk

λC({s1,...,sk})

×µS(ci)\S({c1,...,c`}).

To show that the two expressions do indeed balance, we need to show that:

L∏
`=1

1

µS({c1,...,c`})
=

L∑
`=0

∏̀
j=1

1

µS({c1,...,cj})
× 1

µS({ci,c1,...,c`})

×
L∏

j=`+1

1

µS({ci,c1,...,cj})
× µS(ci)\S({c1,...,c`})

(A.1)

which follows by induction on L. For L = 1:

1

µS(ci)

1

µS(ci,c1)
µS(ci) +

1

µS(c1)

1

µS({ci,c1})
µS(ci)\S(c1)

=
1

µS({ci,c1})

µS(c1) + µS(ci)\S(c1)

µS(c1)
=

1

µS(c1)
,

20

and assuming that (A.1) holds for L− 1, we show that for L:

L∑
`=0

∏̀
j=1

1

µS({c1,...,cj})
× 1

µS({ci,c1,...,c`})

×
L∏

j=`+1

1

µS({ci,c1,...,cj})
× µS(ci)\S({c1,...,c`})

=

L−1∑
`=0

∏̀
j=1

1

µS({c1,...,cj})
× 1

µS({ci,c1,...,c`})

×
L−1∏
j=`+1

1

µS({ci,c1,...,cj})

1

µS({ci,c1,...,cL})
× µS(ci)\S({c1,...,c`})

+

L∏
j=1

1

µS({c1,...,cj})
× 1

µS({ci,c1,...,cL})
× µS(ci)\S({c1,...,cL})

=

L−1∏
j=1

1

µS({c1,...,cj})
× 1

µS({ci,c1,...,cL})

+

L∏
j=1

1

µS({c1,...,cj})
× 1

µS({ci,c1,...,cL})
× µS(ci)\S({c1,...,cL})

=

L−1∏
j=1

1

µS({c1,...,cj})
× 1

µS({ci,c1,...,cL})

(
1 +

µS(ci)\S({c1,...,c`})

µS({c1,...,cL})

)
=

L∏
j=1

1

µS({c1,...,cj})

• Balance of (iii) with (vi):

For sj 6∈ S({c1, . . . , cL})

P q(c1, . . . , cL, s1, . . . , sK)× µsj =
L∏
`=1

λc`

µS({c1,...,c`})

K∏
k=1

µsk

λC({s1,...,sk})
× µsj ;

K∑
k=0

P q(c1, . . . cL, s1, . . . , sk, sj , s
k+1, . . . , sK)

×λC(sj)\C({s1,...,sk})

=

K∑
k=0

L∏
`=1

λc`

µS({c1,...,c`})

k∏
i=1

µsi

λC({s1,...,si})

µsj
λC({sj ,s1,...,sk})

K∏
i=k+1

µsi

λC({sj ,s1,...,si})
× λC(sj)\C({s1,...,sk}).

To show that the two expressions do indeed balance, we need to show that:

K∏
k=1

1

λC({s1,...,sk})
=

K∑
k=0

k∏
i=1

1

λC({s1,...,si})
× 1

λC({sj ,s1,...,sk})

×
K∏

i=k+1

1

λC({sj ,s1,...,si})
× λC(sj)\C({s1,...,sk})

(A.2)

The proof of (A.2) is similar to the proof of (A.1)450

21

Appendix B. Unique Path of the FCFS Infinite Directed Matching Model

In Appendix B and Appendix C we prove properties of the FCFS directed matching of the i.i.d sequence

of customer and server types . . . , z1, z2, . . ., where servers are only matched to previous customers, and of the

Markov chain U(n) of the leftover unmatched customers and servers. We use the notation βj = µsj/(λ̄+ µ̄).

Proof of Theorem 6.2. We prove the Theorem in several steps, requiring two lemmas and two propositions.455

The two lemmas are pathwise results which do not depend on any probabilistic assumptions, and they prove

subadditivity and monotonicity. Following that, Proposition 1 shows forward coupling, and Proposition 2

shows backward coupling. The proof is then completed in a short paragraph. This proof is very similar to the

proof of Theorem 3 in [8]

Lemma 1 (Monotonicity). Consider a subsequence z1, . . . , zM of servers and customers, with all the possible460

FCFS matches of servers to previous customers. Assume there are K customers and L servers left unmatched.

Consider now an additional element z0 preceding z1, and the complete FCFS matching of servers to previous

customers of z0, z1, . . . , zM . Then:

(i) If z0 = c0 is an additional customer, the sequence z0, z1, . . . , zM will have no more than K+1 customers

and L servers unmatched.465

(ii) If z0 = s0 is an additional server, the sequence z0, z1, . . . , zM will have exactly K customers and L+ 1

servers unmatched.

Proof. Statement (ii) is trivial; s0 will be unmatched and all the other links in s0, z1, . . . , zM will be unchanged

from z1, . . . , zM .

To prove (i), let A = (z1, . . . , zM). In the matching of (c0, A), if c0 has no match, then all the other links470

in the matching are the same as in the matching of A, so the total number of unmatched customers is K + 1

and unmatched servers is L. If c0 is matched to a server zn = sn and sn is unmatched in the matching of A

then (c0, sn) is a new link, and all the other links in the matching of (c0, A) are the same as in the matching

of A, so the total number of unmatched customers is K and unmatched servers is L− 1.

If c0 is matched to zn1 and zn1 = sn−1 was matched to zm1 = cm1 in the A matching, then (c0, sn1) is a475

new link, and the link (sn1 , cm1) in the A matching is disrupted. We now look for a match for zm1 = cm1 in

the matching of (c0, A). Clearly, cm1 is not matched to any of zj = sj , m1 < j < n1, since in A any such server

was either matched to an earlier customer, and this link is still there in the matching of c0, A, or such a server

is incompatible with cm1 ; otherwise cm1
could not have been matched to sn1 in A. So cm1 will either remain

unmatched, or it will be matched to some zn2 = sn2 , where n2 > n1. In the former case, all the links of the A480

matching except (sn1 , cm1) remain unchanged in the matching of (c0, A), and so the numbers of unmatched

items in (c0, A) is K+ 1 and L. In the latter case, there are again two possibilities: If sn2 is unmatched in the

A matching, it will now be matched to cm1 and the (c0, A) matching will have disrupted one link and added

2 links retaining all other links of the A matching, so the numbers of unmatched items are K and L − 1. If

sn2 is matched to zm2 = cm2 in the A matching, then the link sn2 , cm2 is disrupted, and we now look for a485

22

match for cm2 in the (c0, A) matching. Similar to cm1 , either cm2 remains unmatched, resulting in K + 1 and

L unmatched items in the (c0, A) matching, or, by the same argument as before, cm2 will be matched to sn3 ,

where n3 > n2. Repeating these arguments for any additional disrupted links, we conclude that we either end

up with one more link, so the number of unmatched items are K and L− 1, or we have the same number of

links and the number of unmatched items are K + 1 and L.490

Lemma 2 (Subadditivity). Let A′ = (z1, . . . , zm), A′′ = (zm+1, . . . , zM) and let A = (z1, . . . , zM). Consider

the complete FCFS matching of servers to earlier customers in A′, in A′′, and in A and let K ′,K ′′,K be the

number of unmatched customers and L′, L′′, L be the number of unmatched servers in these three matchings.

Then K ≤ K ′ +K ′′ and L ≤ L′ + L′′.

Proof. Let Â′ = (ẑ1, . . . , ẑK
′+L′) be the ordered unmatched customers and servers from the complete FCFS495

matching of A′. Then the FCFS matching of (Â′, A′′) will have exactly the same ordered unmatched customers

and servers as the FCFS matching of A. We now construct the matching of (Â′, A′′) in steps, starting with

the matching of (ẑK
′+L′ , A′′), next the matching of (ẑK

′+L′−1, ẑK
′+L′ , A′′) and so on. At each step, by

Lemma 1, if the added zj is a server the number of unmatched servers increases by 1, and the number of

unmatched customers remains unchanged. If the added zj is a customer the number of unmatched servers500

remains unchanged or decreases by 1, and the number of unmatched customers increases by 1 or remains

unchanged. It follows that the total number unmatched customers is ≤ K ′ +K ′′ and of unmatched servers is

≤ L′ + L′′.

We assume that the stability condition (1) holds. By Theorem 6.1, the augmented Markov chain of the

infinite directed matching U(n) is ergodic. Using the Kolmogorov extension theorem [16], we may define (in505

a non-constructive way) a stationary version U∗ = (U∗(n))∞n=−∞ of the Markov chain. Define also U [k] =

(U [k](n))∞n=−k the realization of the Markov chain that starts at U [k](−k) = ∅.

Our first task is to show forward coupling, namely that U∗ and U [0] coincide after a finite time τ with

E(τ) <∞. Following that we use standard arguments to show backward coupling and convergence to a unique

matching.510

Proposition 1 (Forward coupling). The two processes (U∗(n))∞n=−∞ and (U [k](n))∞n=−k will couple after a

finite time τ , with E(τ) <∞.

Proof. Denote by |u| the number of unmatched customers for any state u of process U ; we refer to |u| as the

length of the state. Consider the sequence of times 0 ≤M0 < M1 < · · · < M`, · · · at which U∗(M`) = ∅. This

sequence is infinite with probability 1, and E(M`) = E(M0) + `E(M1 −M0) < ∞, ` ≥ 0 by the ergodicity.515

Consider the state u0 = U [0](M0). Then |u0| ≤ M0. By the monotonicity results of Lemmas 1 and 2, the

states of U [0] satisfy |u0| ≥ |U [0](M1)| ≥ . . . ≥ |U [0](M`)|, i.e. the length of the state of U [0] at the times

M0,M1, . . . is non-increasing. This is because each block of customers and servers in times between M`−1

and M` on its own has 0 unmatched. Furthermore, if the first unmatched customer in U [0](M`) is ci, and the

23

following item in the infinite sequence of customers and servers, zM`+1 is sj ∈ S(ci), then M`+1 = M` + 1,520

and |U [0](M` + 1)| = |U [0](M`)| − 1. This will happen with probability ≥ δ = min(β1, . . . , βJ). Hence, there

will be coupling after at most
∑|u0|
j=1 Lj perfect matching blocks of U∗, where Lj are i.i.d. geometric random

variables with probability δ of success. So coupling occurs almost surely, and the coupling time τ satisfies

E(τ) ≤ E(M0)
(

1
δE(M1 −M0)

)
.

The proof for U [k] is the same.525

Note that once U [k] and U∗ couple, they stay together forever. We now need to show backward coupling.

Proposition 2 (Backward coupling). Let U∗ be the stationary version of the Markov chain U(·), and let

U [−k] be the process starting empty at time −k. Then limk→∞ U [−k](n) = U∗(n) for all −∞ < n <∞ almost

surely.

Proof. The statement of almost surely refers to the measure of the infinite sequences . . . , z−1, z0, z1,530

Define Tk = inf{n ≥ −k : U [−k](n) = U∗(n)}. By the forward coupling Proposition 1, we get that Tk is

almost surely finite. Let T̂K = max0≤k≤K Tk. Then T̂K ≥ 0 and is also almost surely finite for any K. T̂K

is the time at which all the processes starting empty at time −k, where 0 ≤ k ≤ K, couple with U∗, and

remain merged forever. Define the event EK = {ω : ∀` ≥ 0, U [−`](T̂K) = U∗(T̂K)}, i.e., those ω for which

the process starting empty at any time before 0 will merge with U∗ by time T̂K . We claim that P (EK) > 0.535

We evaluate P (EK). For any fixed ` ≥ 0, let E`,K be the event that U [−`] couples with U∗ by time T̂K . We

have EK =
⋂
`≥0E`,K =

⋂
`>K E`,K (by definition of T̂K , E`,K is always true for ` ≤ K, so we only need to

consider ` > K), so EK =
⋃
`>K E`,K .

The event E`,K will happen if starting at the last time prior to −K at which the process U [−`] was empty,

the next time that it is empty is after time 0. The reason for that is that otherwise the process U [−`] reaches540

state ∅ at some time k ∈ [−K, 0] and from that time onwards it is coupled with U [−k], and will couple with

U∗ by time T̂K .

Define for ` > K, D` = {ω : O[−`](m) 6= ∅ for all − ` < m ≤ 0}. Clearly, from the above,
⋃
`>K E`,K ⊆⋃

`>K D`. Let τ denote the recurrence time of the empty state. Then:

P (EK) = P (
⋃
`>K

E`,K) ≤ P (
⋃
`>K

D`) ≤
∑
`>K

P (τ > `).

By the ergodicity
∑∞
l=0 P (τ > l) = E(τ) < ∞. Hence we have that P (EK) → 0 as K → ∞, and therefore

P (EK) > 0 for large enough K, and P (EK)→ 1 as K →∞. Note also that EK ⊆ EK+1.

Define now T̂ = supk≥0 Tk. We claim that T̂ is finite a.s. Consider any ω. Then by P (EK)→ 1 as K →∞545

and by the monotonicity of EK , almost surely for this ω there exists a value ` such that ω ∈ E`. But if ω ∈ El,

then T̂ (ω) ≤ T̂` <∞.

So, all processes starting empty before time 0 will couple with U∗ by time T̂ . By the stationarity of the

sequences (zn)∞n=−∞ and of U∗, we then also have that all processes U [−k](n) starting empty before −k will

couple with U∗ by time 0, if k ≥ T̂ . Hence using the Loynes’ scheme of starting empty at −k and letting550

24

k → ∞ the constructed process will merge with U∗ at time 0. But the same argument holds not just for 0,

but for any negative time −n. Hence U [−k] and U∗ couple at −n (and stay coupled) for any k > n+ T̂ . This

completes the proof.

End of proof of Theorem 6.2. We saw that limk→∞ U [−k](n) = U∗(n) for all n almost surely. Each process

U [−k](n) determines matches uniquely for all n > −k, so if we fix n, matches from n onwards are uniquely555

determined by limk→∞ U [−k](n). Hence (U∗(n))∞n=−∞ determines, for every customer zn = cn, its match

uniquely, almost surely. This proves the theorem.

Appendix C. Time Reversal of the FCFS Infinite Directed Matching Model

To prove Theorem 6.3, we consider blocks of the form z1, . . . , zn such that all the customers in the block

are matched to servers further in the sequence, we refer to those as perfect blocks. We first show in Lemma 3560

that the exchange transformation implies time reversal in each block. Next in Lemma 4 we show that perfect

blocks and their reversal have the same probability. The proof of the theorem then follows by considering the

Palm measure and the time stationary measure of the exchanged sequence.

Lemma 3. Let z1, . . . , zn be a perfect block of customers and servers, and let z̃1, . . . , z̃n be the block obtained

from z1, . . . , zn by the exchange transformation. Then z̃n, . . . , z̃1 is also a perfect block. In other words, if565

we have a block where all the customers are matched FCFS to servers ahead of them in the sequence, and

we exchange the positions of matched pairs of customers and servers and retain the links, then the resulting

matching is FCFS of servers to customers ahead of them in the sequence in reversed time.

Proof. Consider the sequence z̃n, . . . , z̃1, and assume that z̃k = ci is coupled in the exchanged sequence to

z̃l = sj , with l ahead of k in the reversed sequence, i.e. l < k. Then we look at z̃l
′

= sj′ with l < l′ < k.570

There are two possibilities: If z̃l
′

is unmatched, then zl
′

= z̃l
′

because it was not exchanged. Hence in the

original sequence zl = ci precedes zl
′

= sj′ precedes zk = sj . But then sj′ must be incompatible with ci, or

else zl = ci would have matched with zl
′

= sj′ in the original sequence. The other possibility is that z̃l
′

has

s ′jci s j

s ′j cis j c ′i

c ′i
zl z ′l zk z ′k

!z ′k!zk!zl !z ′l

s ′jci s j

s ′j cis j

zl z ′l zk

!zk!zl !z ′l

Figure C.12: Illustration of the proof of time reversal

been matched and exchanged with z̃k
′

= ci′ . Assume now that sj′ is compatible with ci. Then we must show

that k′ > k. Assume to the contrary l < l′ < k′ < k. Then in the original sequence z̃l = ci precedes z̃l
′

= ci′575

precedes z̃k
′

= sj′ precedes z̃k = ci. But then zl = ci would have matched with zk
′

= sj′ in the original

sequence. This completes the proof. The proof is illustrated in Figure C.12.

25

Lemma 4. Consider the FCFS directed matching of . . . , z−1, z0, z1, . . ., and let zm+1, . . . , zm+M be the block

of customers and servers in positions [m+1,m+M]. Then the probability of observing these values, conditional

on the event that the FCFS directed matching of these values is a perfect match is:580

P
((
zm+1, . . . , zm+M

)∣∣∣(zm+1, . . . , zm+M
)

has perfect match
)

= κM

I∏
i=1

αci
#ci

J∏
j=1

βsj
#sj

where κM is a constant that may depend on M , and #ci and #sj count the number of type ci customers and

type sj servers in the block.

Proof. The conditional probability is calculated using Bayes formula:

P (seeing zm+1, . . . , zm+M | having a perfect match)

=
P (having a perfect match |seeing zm+1, . . . , zm+M)

P (having a perfect match of length M)

×P (seeing zm+1, . . . , zm+M)

= κM × 1{(zm+1,...,zm+M) is a perfect match} ×
I∏
i=1

αci
#ci

J∏
j=1

βsj
#sj

where κM = 1
/
P (having a perfect match of length M).

Corollary 3. Consider the FCFS directed matching of . . . , z−1, z0, z1, Let zm+1, . . . , zm+M be the block

of customers and servers in positions [m + 1,m + M], which has perfect matching, and let z̃m+1, . . . , z̃m+M

be its exchange transformation. Replace zm+1, . . . , zm+M by z̃m+M , . . . , z̃m+1. Then z̃m+1, . . . , z̃m+M will be

a perfectly matched block in the new directed matching of the complete sequence, and:

P (z̃m+1, . . . , z̃m+M) = P (zm+1, . . . , zm+M).

Proof. That z̃m+1, . . . , z̃m+M is a FCFS directed perfectly matched block follows from Lemma 3 and that585

P (z̃m+M , . . . , z̃m+1) = P (zm+1, . . . , zm+M) follows from Lemma 4.

We now assume that the system is ergodic, i.e., the Markov chain U(n) is ergodic (which holds if and

only if the stability condition (1) holds). We have shown in Theorem 6.2 that for i.i.d sequences of servers

and customers . . . , z−1, z0, z1, . . ., under ergodicity, there exists a.s. a unique FCFS directed matching, which

corresponds to the stationary version of the Markov chain U (generated by the Loynes’ construction). We now590

define the following augmented process, with paths p where the state consists of p(n) = (U(n), zn, vn), and

where vn records the location of the element that is matched with zn. That is, if zn = ci is matched to zm = sj

where m > n then vn = m, if zn = sj is matched to zm = ci where m < n then vn = m, and if zn = sj

is unmatched then vn = n. The path p is uniquely determined by the i.i.d. sequence . . . , z−1, z0, z1,

We denote by P the probability distribution of the paths p. We now define paths ψp by the exchange595

transformation followed by time reversal. From p(n) = (U(n), zn, vn) we define ψp(−n) = (Ũ(−n), z̃−n, v−n)

26

where z̃−n = zvn , ṽ−n = −vn, and define Ũ(m), for every m, as the customers that are unmatched and the

servers that are unmatched starting from the last unmatched customer, in the sequence of z̃r, ṽr, r ≤ m (i.e.,

it behaves just like U(n), but is obtained from the given matching that is already determined by z̃, ṽ). For

every path p there is a transformed path ψp.600

We denote by ψP the distribution of the transformed paths ψp. Our goal is to show that ψP = P.

Let P0 be the Palm version of the measure P, with respect to the state ∅ of U , i.e., P0 is the law of

(U(n), zn, vn) conditioned on the event {U(0) = ∅}. A realization of a process of law P0 can be obtained

by considering a bi-infinite sequence of perfectly matched blocks of i.i.d customers and servers. Denote by

O(m), m = 0,±1,±2, . . . a sequence of i.i.d. minimal perfectly matched blocks. Then the resulting paths of605

these will have the distribution P0. Now perform the exchange transformation on this sequence, followed by

time reversal, and let ψP0 be the probability distribution of the result. For ψP0, let ψP be the corresponding

stationary version of ψP0. According to Lemma 3, we have ψP0 = P0. Because ψP is the stationary version

of ψP0 and P is the stationary version of P0, we deduce that ψP = P.

The key to the argument is the link between time-stationarity and event-stationarity. For general back-610

ground on Palm calculus, see for instance Chapter 1 in [17]. We obtain the following result.

Proposition 3. Consider a FCFS directed matching model under the stability condition (1). Let . . . , z−1, z0, z1, . . .

be the independent i.i.d. sequence of customers and servers, with the unique FCFS matching between them.

Then the exchanged sequence . . . , z̃−1, z̃0, z̃1, . . . is also i.i.d. with the same law. Furthermore, the FCFS

directed matching for the exchanged sequence in reversed time consists of the same links as the matching of615

the original sequence.

Proof of Theorem 6.3. That . . . , z̃−1, z̃0, z̃1, . . . is an i.i.d. sequence follows from the identity of ψP and

P. That the Loynes’ construction in reversed time will use the same links follows because the links of

. . . , z̃−1, z̃0, z̃1, . . . give a set of links which are the FCFS directed matchings in reversed time between

. . . , z̃−1, z̃0, z̃1, . . ., and by Theorem 6.2 this matching is unique.620

Appendix D. Proof of Theorem 4.1, on the Comparison of ‘N’-system Policies

We will prove the stronger result. For h = q, r, let Nh(t) = Nh
1 (t) + Nh

2 (t), and assume Nh
i (0) = 0 for

i = 1, 2, h = q, r.

Proposition 4. Starting from an empty system, for every t > 0 the following holds: {Nr(t), t ≥ 0} ≥st
{Nq(t)− 1, t ≥ 0}, {Nr

1 (t), t ≥ 0} ≥st {Nq
1 (t)− 1, t ≥ 0}, {Nr

2 (t), t ≥ 0} ≥st {Nq
2 (t)− 1, t ≥ 0},.625

This will by ergodicity prove that Theorem 4.1 holds.

Proof of Proposition 4. We will show the result path-wise (with probability 1) for coupled systems. We refer

to the system under the Redundancy policy as system-r and to the system under FCFS-ALIS as system-q. We

assume that system-q and system-r share a sequence of event times generated according to a Poisson process

27

at rate λ̄+ µ̄, and the types of events are coupled so that each event, independently, is an arrival of type i with630

probability λi/(λ̄+ µ̄), and is a potential service completion at server i with probability µi/(λ̄+ µ̄). We will

show our result by induction on T , where T is the number of events so far, and, abusing notation, we define

Nh
i (T) to be the state immediately after event T occured. Our result is trivially true at time 0, and, if it is

true at event T , it is true for all times between event T and before event T + 1. Let us suppose the result is

true for all time up until just before event T + 1, and, in particular, Nr(T) ≥ Nq(T)− 1, Nr
2 (T) ≥ Nq

2 (T)− 1,635

and Nr
1 (T) ≥ Nq

1 (T)− 1. We first consider the result for Nr(T + 1) and Nq(T + 1).

It is easy to see that if Nr(T) ≥ Nq(T) then Nr(T + 1) ≥ Nq(T + 1)−1, because Nh(T +1) ≥ Nh(T)−1,

for h = q, r, so suppose Nr(T) = Nq(T) − 1. If event T + 1 is an arrival, then Nr(T + 1) = Nq(T + 1) − 1.

If event T + 1 is a potential service completion at server i and server i is busy in system-q, then either

Nr(T + 1) = Nq(T + 1)− 1 or Nr(T + 1) = Nq(T + 1).640

Hence, it remains only to show that Nr(T + 1) ≥ Nq(T + 1) − 1 given that Nr(T) = Nq(T) − 1, event

T + 1 is a potential service completion at server i, and server i is idle in system-q for i = 1, 2. We will show

that in this case, server i will also be idle in system-r, so Nr(T + 1) = Nr(T) = Nq(T)− 1 = Nq(T + 1)− 1.

If i = 2, because server 2 is idle in system-q, we must have Nq(T) ≤ 1 and Nq(T + 1) = Nq(T), so

Nq(T + 1)− 1 ≤ 0 ≤ Nr(T + 1).645

If i = 1, because server 1 is idle in system-q, Nq
1 (T) = 0 or 1.

Assume first that Nq
1 (T) = 0. Then Nq(T) = Nq

2 (T). It follows from Nr(T) = Nq(T) − 1 and Nr
2 (T) ≥

Nq
2 (T) − 1 that Nr

2 (T) = Nq
2 (T) − 1 = Nr(T) and Nr

1 (T) = 0. So we have shown that server 1 is idle in

system-r.

Assume now that Nq
1 (T) = 1 and server 1 is idle in system-q. If Nr

1 (T) = 0, then server 1 is idle in system-r650

and we are done. It only remains to consider the possibility that Nr
1 (T) = Nq

1 (T) = 1. We will show that this

leads to a contradiction with the assumption that server 1 is idle in system-q. Assuming Nr
1 (T) = Nq

1 (T) = 1,

because Nr(T) = Nq(T) − 1 we have Nr
2 (T) = Nq

2 (T) − 1. Consider then the additional customer of type 2

that is present in system-q and not in system-r. By FCFS it must have been the earliest arrival among the

Nq
2 (T) type 2 customers. Also, because it has already left system-r, it must have arrived before the single655

type 1 customer in both systems. Hence this customer of type 2 must be in service at server 2 in system-q.

Therefore the single customer of type 1 must be in service at server 1 in system-q. This contradicts our

assumption that server 1 is idle in system-q.

We therefore have the result for the total number of customers, so let us now consider the result for type

2 customers. Arguing as above, the only difficult case is the one where Nr
2 (T) = Nq

2 (T)− 1, event T + 1 is a660

potential service completion at server 2, and server 2 is serving a type-2 customer in system-r (so Nr
2 (T) ≥ 1

and Nq
2 (T) ≥ 2). We now show that in this case, server 2 must also be serving a type 2 customer in system-q,

so Nr
2 (T + 1) = Nq

2 (T + 1)− 1.

The argument for this is the same as above: The single type 2 customer that is p resent in system-q and

has already left system-r must be the earliest customer in system-q, and so it must be in service at server 2 in665

28

system-q at time T.

Next consider the result for type 1 customers. We assume by induction that Nr
1 (T) ≥ Nq

1 (T) − 1. As

before, we only need to consider the case that Nr
1 (T) = Nq

1 (T) − 1, and we only need to consider potential

service completions.

First suppose the event T + 1 is a potential service completion at server 1. If server 1 is idle in system-r,670

clearly Nr
1 (T + 1) ≥ Nq

1 (T + 1)− 1. If server 1 is working on a type 1 customer in system-r, then Nr
1 ≥ 1 and

Nq
1 ≥ 2, so at least one of the type 1 customers must be in service at server 1 in system-q and we will have

Nq
1 (T + 1) = Nr

1 (T + 1)− 1.

Now suppose the event T + 1 is a potential service completion at server 2. If in system-q server 2 is serving

a type 1 customer, then Nr
1 (T + 1) ≥ Nq

1 (T + 1)− 1. If in system-q server 2 is serving a type 2 customer, and675

in system-r server 2 is either idle or serving a type 2 customer, then Nq
1 (T + 1) = Nr

1 (T + 1)− 1.

Thus, the only difficult possibility is if the event T + 1 is a potential service completion at server 2, server

2 is serving a type 2 customer in system-q, while server 2 is serving a type 1 customer in system-r. We show

by the induction hypothesis that this case is impossible.

We have assumed that Nr
1 (T) = Nq

1 (T) − 1, and we have shown that Nr(T) ≥ Nq(T) − 1, therefore680

Nr
2 (T) = Nq

2 (T). Therefore in both coupled systems, after event T there is the same set of type 2 customers.

If in system-r server 2 is serving a type 1 customer, this means that this customer has arrived earlier than all

the type 2 customers. But, using the same argument as before, this means that the additional type 1 customer

in system-q has arrived even earlier. This contradicts the possibility that in system-q server 2 is serving a

type 2 customer and in system-r server 2 is serving a type 1 customer.685

This completes the proof.

The same argument can be used to show the following for the “W” system, where we redefine customer

types so that type i customers can only be served at server i, i = 1, 2, and type 0 customers can be served at

either server.690

Proposition 5. {Nr
0 (t) +Nr

i (t), t ≥ 0} ≥st {Nq
0 (t) +Nq

i (t)− 1, t ≥ 0}, {Nr
i (t), t ≥ 0} ≥st {Nq

i (t)− 1, t ≥ 0},

i = 1, 2.

References

[1] I. Adan, G. Weiss, A skill based parallel service system under fcfs-alis – steady state, overloads, and

abandonments, Stochastic Systems 4 (1) (2014) 250–299.695

[2] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, A. Scheller-Wolf, Queueing with

redundant requests: exact analysis, Queueing Systems 83 (3-4) (2016) 227–259.

[3] X. Su, S. A. Zenios, Patient choice in kidney allocation: A sequential stochastic assignment model,

Operations Research 53 (3) (2005) 443–455.

29

[4] E. H. Kaplan, Managing the demand for public housing, Ph.D. thesis, Massachusetts Institute of Tech-700

nology (1984).

[5] E. H. Kaplan, A public housing queue with reneging, Decision Sciences 19 (2) (1988) 383–391.

[6] R. Caldentey, E. H. Kaplan, G. Weiss, Fcfs infinite bipartite matching of servers and customers, Advances

in Applied Probability 41 (03) (2009) 695–730.

[7] I. Adan, G. Weiss, Exact fcfs matching rates for two infinite multitype sequences, Operations Research705

60 (2) (2012) 475–489.

[8] I. Adan, A. Busic, J. Mairesse, G. Weiss, Reversibility and further properties of fcfs infinite bipartite

matching, arXiv preprint arXiv:1507.05939v2; Mathematics of Operations Research, to appear.

[9] U. Ayesta, T. Bodas, I. Verloop, A unifying framework for redundancy models: product form and impact

of independence assumption.710

[10] J. Visschers, I. Adan, G. Weiss, A product form solution to a system with multi-type jobs and multi-type

servers, Queueing Systems 70 (3) (2012) 269–298.

[11] K. Gardner, M. Harchol-Balter, E. Hyytiä, R. Righter, Scheduling for efficiency and fairness in systems

with redundancy, Performance Evaluation 116 (2017) 1–25.

[12] J. Mairesse, P. Moyal, Stability of the stochastic matching model, Journal of Applied Probability 53 (4)715

(2016) 1064–1077.

[13] T. Bonald, C. Comte, Balanced fair resource sharing in computer clusters, Performance Evaluation 116

(2017) 70–83.

[14] F. P. Kelly, Reversibility and stochastic networks, Cambridge University Press, 2011.

[15] J. Walrand, An introduction to queueing networks, Prentice Hall, 1988.720

[16] B. Øksendal, Stochastic differential equations, Springer, 2003.

[17] F. Baccelli, P. Brémaud, Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Re-

currences, Springer, 2003.

30

