436 research outputs found
Particle-in-cell Simulations of Ion Dynamics in a Pinched-beam Diode
article-in-cell simulations of a 1.6 MV, 800 kA, and 50 ns pinched-beam diode have been completed with emphasis placed on the quality of the ion beams produced. Simulations show the formation of multiple regions in the electron beam flow characterized by locally high charge and current density (“hot spots”). As ions flow through the electron-space-charge cloud, these hot spots electrostatically attract ions to produce a non-uniform ion current distribution. The length of the cavity extending beyond the anode-to-cathode gap (i.e., behind the cathode tip) influences both the number and amplitude of hot spots. A longer cavity length increases the number of hot spots yet significantly reduces the amplitude producing a smoother, more uniform ion beam than for shorter cavities. The net current and the ion bending angles are also significantly smaller with long cavities
Recommended from our members
Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10^(20) protons on target. A fit to neutrino oscillations yields values of |Δm^2|=(2.32_(-0.08)^(+0.12))×10^(-3) eV^2 for the atmospheric mass splitting and sin^2(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
Measurement of the neutrino mass splitting and flavor mixing by MINOS
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of protons on target. A fit to neutrino oscillations yields values of ,eV for the atmospheric mass splitting and m sin^2!(2 heta) > 0.90 (90%,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
Recommended from our members
New constraints on muon-neutrino to electron-neutrino transitions in MINOS
This paper reports results from a search for ν_μ → ν_e transitions by the MINOS experiment based on a 7×10^(20) protons-on-target exposure. Our observation of 54 candidate ν_e events in the far detector with a background of 49.1±7.0(stat)±2.7(syst) events predicted by the measurements in the near detector requires 2sin^2(2θ_(13))sin^2θ_(23)<0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at δ_(CP)=0. The experiment sets the tightest limits to date on the value of θ_(13) for nearly all values of δ_(CP) for the normal neutrino mass hierarchy and maximal sin^2(2θ_(23))
Recommended from our members
Active to Sterile Neutrino Mixing Limits from Neutral-Current Interactions in MINOS
Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of 7.07×10^(20) protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of 754±28(stat)±37(syst) for oscillations among three active flavors. The fraction f_s of disappearing ν_μ that may transition to ν_s is found to be less than 22% at the 90% C.L
Recommended from our members
Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS
We report the results of a search for ν_e appearance in a ν_μ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2×10^(20) protons on the NuMI target at Fermilab, we find 2sin^2(θ_(23))sin^2(2θ_(13))<0.12(0.20) at 90% confidence
level for δ=0 and the normal (inverted) neutrino mass hierarchy, with a best-fit of 2sin^2(θ_(23))sin^2(2θ_(13))=0.041^(+0.047)_(-0.031)(0.079^(+0.071)_(-0.053).
The θ_(13)= 0 hypothesis is disfavored by the MINOS data
at the 89% confidence level
Recommended from our members
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×10^(20) protons on target in which neutrinos of energies between ∼500 MeV and 120 GeV are produced predominantly as ν_μ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ν_μ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles θ_(24) and θ_(34) are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime τ_3/m_3>2.1×10^(-12) s/eV at 90% C.L
Recommended from our members
First Direct Observation of Muon Antineutrino Disappearance
This Letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̅ _μ production, accumulating an exposure of 1.71×10^(20) protons on target. In the Far Detector, 97 charged current ν̅ _μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̅ 2|= [3.36=_(-0.40)^(+0.46)(stat)±0.06(syst)]x10^(-3)eV^2,sin^2(2θ̅)=0.86 _(-0.12)^(+0.11)(stat)±0.01(syst). The MINOS ν̅ _μ and ν̅ _μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters
Recommended from our members
Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266±0.001(stat)_(-0.014)^(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108±0.019(stat+syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energie
- …