436 research outputs found

    Particle-in-cell Simulations of Ion Dynamics in a Pinched-beam Diode

    Get PDF
    article-in-cell simulations of a 1.6 MV, 800 kA, and 50 ns pinched-beam diode have been completed with emphasis placed on the quality of the ion beams produced. Simulations show the formation of multiple regions in the electron beam flow characterized by locally high charge and current density (“hot spots”). As ions flow through the electron-space-charge cloud, these hot spots electrostatically attract ions to produce a non-uniform ion current distribution. The length of the cavity extending beyond the anode-to-cathode gap (i.e., behind the cathode tip) influences both the number and amplitude of hot spots. A longer cavity length increases the number of hot spots yet significantly reduces the amplitude producing a smoother, more uniform ion beam than for shorter cavities. The net current and the ion bending angles are also significantly smaller with long cavities

    Measurement of the neutrino mass splitting and flavor mixing by MINOS

    Get PDF
    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25imes10207.25 imes 10^{20} protons on target. A fit to neutrino oscillations yields values of Deltam2=(2.320.08+0.12)imes103|Delta m^2| = (2.32^{+0.12}_{-0.08}) imes10^{-3},eV2^2 for the atmospheric mass splitting and m sin^2!(2 heta) > 0.90 (90%,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
    corecore