23 research outputs found

    Linking integrative plant physiology with agronomy to sustain future plant production

    Get PDF
    Sustainable production of high-quality food is one of today's major challenges of agriculture. To achieve this goal, a better understanding of plant physiological processes and a more integrated approach with respect to current agronomical practices are needed. In this review, various examples of cooperation between integrative plant physiology and agronomy are discussed, and this demonstrates the complexity of these interrelations. The examples are meant to stimulate discussions on how both research areas can deliver solutions to avoid looming food crises due to population growth and climate change. In the last decades, unprecedented progress has been made in the understanding of how plants grow and develop in a variety of environments and in response to biotic stresses, but appropriate management and interpretation of the resulting complex datasets remains challenging. After providing an historical overview of integrative plant physiology, we discuss possible avenues of integration, involving advances in integrative plant physiology, to sustain plant production in the current post-omics era. Finally, recommendations are provided on how to practice the transdisciplinary mindset required, emphasising a broader approach to sustainable production of high-quality food in the future, whereby all those who are involved are made partners in knowledge generation processes through transdisciplinary cooperation. © 2020 Elsevier B.V

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    The super-variational technique revisited

    Get PDF
    Isoprene emissions from the leaves of velvet bean (Mucuna pruriens L. var utilis) plants exhibited temperature response patterns that were dependent on the plant's growth temperature. Plants grown in a warm regimen (34/28°C, day/night) exhibited a temperature optimum for emissions of 45°C, whereas those grown in a cooler regimen (26/20°C, day/night) exhibited an optimum of 40°C. Several previous studies have provided evidence of a linkage between isoprene emissions and photosynthesis, and more recent studies have demonstrated that isoprene emissions are linked to the activity of isoprene synthase in plant leaves. To further explore this linkage within the context of the temperature dependence of isoprene emissions, we determined the relative temperature dependencies of photosynthetic electron transport, CO(2) assimilation, and isoprene synthase activity. When measured over a broad range of temperatures, the temperature dependence of isoprene emission rate was not closely correlated with either the electron transport rate or the CO(2) assimilation rate. The temperature optima for electron transport rate and CO(2) assimilation rate were 5 to 10°C lower than that for the isoprene emission rate. The dependence of isoprene emissions on photon flux density was also affected by measurement temperature in a pattern independent of those exhibited for electron transport rate and CO(2) assimilation rate. Thus, despite no change in the electron transport rate or CO(2) assimilation rate at 26 and 34°C, the isoprene emission rate changed markedly. The quantum yield of isoprene emissions was stimulated by a temperature increase from 26 to 34°C, whereas the quantum yield for CO(2) assimilation was inhibited. In greenhouse-grown aspen leaves (Populus tremuloides Michaux.), the high temperature threshold for inhibition of isoprene emissions was closely correlated with the high temperature-induced decrease in the in vitro activity of isoprene synthase. When taken together, the results indicate that although there may be a linkage between isoprene emission rate and photosynthesis, the temperature dependence of isoprene emission is not determined solely by the rates of CO(2) assimilation or electron transport. Rather, we propose that regulation is accomplished primarily through the enzyme isoprene synthase
    corecore