53,524 research outputs found

    STACBEAM 2

    Get PDF
    An investigation being conducted by Astro Aerospace Corporation (Astro) for Jet Propulsion Laboratory in which efficient structures for geosynchronous spacecraft solar arrays are being developed is discussed. Recent developments in solar blanket technology, including the introduction of ultrathin (50 micrometer) silicon solar cells with conversion efficiencies approaching 15 percent, have resulted in a significant increase in blanket specific power. System specific power depends not only on blanket mass but also on the masses of the support structure and deployment mechanism. These masses must clearly be reduced, not only to minimize launch weight, but also to increase array natural frequency. The solar array system natural frequency should be kept high in order to reduce the demands on the attitude control system. This goal is approached by decreasing system mass, by increasing structural stiffness, and by partitioning the blanket. As a result of this work, a highly efficient structure for deploying a solar array was developed

    Hexagonal spiral growth in the absence of a substrate

    Full text link
    Experiments on the formation of spiraling hexagons (350 - 1000 nm in width) from a solution of nanoparticles are presented. Transmission electron microscopy images of the reaction products of chemically synthesized cadmium nanocrystals indicate that the birth of the hexagons proceeds without assistance from static screw or edge dislocatons, that is, they spiral without constraints provided by an underlying substrate. Instead, the apparent growth mechanism relies on what we believe is a dynamical dislocation identified as a dense aggregate of small nanocrystals that straddles the spiraling hexagon at the crystal surface. This nanocrystal bundle, which we term the "feeder", also appears to release nanocrystals into the spiral during the growth process.Comment: 4 pages, 5 figure

    Polydimethylsiloxane based microfluidic diode

    Get PDF
    In this paper, we present a novel elastomer-based microfluidic device for rectifying flow. The device is analogous to an electronic diode in function since it allows flow in one direction and stops flow in the opposing direction. The device is planar, in-line and can be replica molded via standard soft lithography techniques. The fabrication process is outlined in detail and follows a simple procedure that requires only photolithography and one replica molding step. Several geometries of devices are presented along with their flow versus pressure characteristics. A brief discussion of the device behavior is presented along with possible uses for the device

    Damage as Gamma-limit of microfractures in anti-plane linearized elasticity

    Get PDF
    A homogenization result is given for a material having brittle inclusions arranged in a periodic structure. <br/> According to the relation between the softness parameter and the size of the microstructure, three different limit models are deduced via Gamma-convergence. <br/> In particular, damage is obtained as limit of periodically distributed microfractures

    Changes in the Spatial Allocation of Cropland in the Ft. Cobb Watershed as a Result of Environmental Restrictions

    Get PDF
    Pollution runoff estimates from SWAT are used in a mathematical programming model to optimally model site-specific crop and conservation practices for pollution abatement in the Ft. Cobb watershed in Southwestern Oklahoma. Results indicate the tradeoffs between producer income, sediment and nutrient runoff and the spatial allocation of crops in the watershed.Environmental Economics and Policy,

    The harmonic measure of diffusion-limited aggregates including rare events

    Get PDF
    We obtain the harmonic measure of diffusion-limited aggregate (DLA) clusters using a biased random-walk sampling technique which allows us to measure probabilities of random walkers hitting sections of clusters with unprecedented accuracy; our results include probabilities as small as 10- 80. We find the multifractal D(q) spectrum including regions of small and negative q. Our algorithm allows us to obtain the harmonic measure for clusters more than an order of magnitude larger than those achieved using the method of iterative conformal maps, which is the previous best method. We find a phase transition in the singularity spectrum f(α) at α≈14 and also find a minimum q of D(q), qmin=0.9±0.05

    Experimental data on the single spin asymmetry and their interpretations by the chromo-magnetic string model

    Full text link
    An attempt is made to interpret the various existing experimental data on the single spin asymmetries in inclusive pion production by the polarized proton and antiproton beams. As the basis of analysis the chromo-magnetic string model is used. A whole measured kinematic region is covered. The successes and fails of such approach are outlined. The possible improvements of model are discussed.Comment: 17 pages, 3 figure

    Closed String Tachyons on C/Z_N

    Full text link
    We analyse the condensation of closed string tachyons on the C/ZNC/Z_N orbifold. We construct the potential for the tachyons upto the quartic interaction term in the large NN limit. In this limit there are near marginal tachyons. The quartic coupling for these tachyons is calculated by subtracting from the string theory amplitude for the tachyons, the contributions from the massless exchanges, computed from the effective field theory. We argue that higher point interaction terms are are also of the same order in 1/N as the quartic term and are necessary for existence of the minimum of the tachyon potential that is consistent with earlier analysis.Comment: 19 pages, 1 figure; comments added about NN dependence of contact ter
    corecore