56,131 research outputs found

    Overview of event-by-event analysis of high energy nuclear collisions

    Full text link
    The event-by-event analysis of high energy nuclear collisions aims at revealing the richness of the underlying event structures and provide unique measures of dynamical fluctuations associated with QGP phase transition. The major challenge in these studies is to separate the dynamical fluctuations from the many other sources which contribute to the measured values. We present the fluctuations in terms of event multiplicity, mean transverse momentum, elliptic flow, source sizes, particle ratios and net charge distributions. In addition, we discuss the effect of long range correlations, disoriented chiral condensates and presence of jets. A brief review of various probes used for fluctuation studies and available experimental results are presented.Comment: Invited talk at the "XIth International Workshop on Correlation and Fluctuation in Multiparticle Production", Nov 21-24, 2006, Hangzhou, China (19 pages

    A Study of Educational Simulations Part I - Engagement and Learning

    Get PDF
    Interactive computer simulations with complex representations and sophisticated graphics are a relatively new addition to the classroom, and research in this area is limited. We have conducted over 200 individual student interviews during which the students described what they were thinking as they interacted with simulations. These interviews were conducted as part of the research and design of simulations for the Physics Education Technology (PhET) project. PhET is an ongoing project that has developed over 60 simulations for use in teaching physics, chemistry, and physical science. These interviews are a rich source of information about how students interact with computer simulations and what makes an educationally effective simulation. We have observed that simulations can be highly engaging and educationally effective, but only if the student's interaction with the simulation is directed by the student's own questioning. Here we describe our design process, what features are effective for engaging students in educationally productive interactions and the underlying principles which support our empirically developed guidelines. In a companion paper we describe in detail the design features used to create an intuitive simulation for students to use

    Correlating Student Beliefs With Student Learning Using The Colorado Learning Attitudes about Science Survey

    Get PDF
    A number of instruments have been designed to probe the variety of attitudes, beliefs, expectations, and epistemological frames taught in our introductory physics courses. Using a newly developed instrument -- the Colorado Learning Attitudes about Science Survey (CLASS)[1] -- we examine the relationship between students' beliefs about physics and other educational outcomes, such as conceptual learning and student retention. We report results from surveys of over 750 students in a variety of courses, including several courses modified to promote favorable beliefs about physics. We find positive correlations between particular student beliefs and conceptual learning gains, and between student retention and favorable beliefs in select categories. We also note the influence of teaching practices on student beliefs

    Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    Full text link
    We present measurements of net charge fluctuations in Au+AuAu + Au collisions at sNN=\sqrt{s_{NN}} = 19.6, 62.4, 130, and 200 GeV, Cu+CuCu + Cu collisions at sNN=\sqrt{s_{NN}} = 62.4, 200 GeV, and p+pp + p collisions at s=\sqrt{s} = 200 GeV using the net charge dynamical fluctuations measure ν+−,dyn\nu_{+-,dyn}. The dynamical fluctuations are non-zero at all energies and exhibit a rather modest dependence on beam energy. We find that at a given energy and collision system, net charge dynamical fluctuations violate 1/Nch1/N_{ch} scaling, but display approximate 1/Npart1/N_{part} scaling. We observe strong dependence of dynamical fluctuations on the azimuthal angular range and pseudorapidity widths.Comment: 4 pages, 4 figures, presented at the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, "Quark Matter 2008", Jaipur, India, February 4-10, 200

    A New Instrument For Measuring Student Beliefs About Physics and Learning Physics: The Colorado Learning Attitudes About Science Survey

    Get PDF
    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures: that most teaching practices cause substantial drops in student scores; that a student's likelihood of becoming a physics major correlates with their 'Personal Interest' score; and that, for a majority of student populations, women's scores in some categories, including 'Personal Interest' and 'Real World Connections', are significantly different than men's scores

    Fermi-liquid effects in the gapless state of marginally thin superconducting films

    Full text link
    We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure

    The Psychological Impact of the COVID-19 Pandemic on Health Workers at the Primary Level in the Greater Accra Region

    Get PDF
    Background: The COVID-19 pandemic had a negative impact on lives and livelihoods since its outbreak in the health sector. Health workers in Ghana have been at increased risk of contracting the virus due to their close contact with infected patients and some have become ill or died as a result, placing a significant mental and emotional burden on healthcare workers in Ghana. Objectives: This study examines the psychological impact of COVID-19 on primary healthcare workers in the Greater Accra Region. Methods: The study adopted a cross-sectional design. Data were collected using the Generalized Anxiety Disorder 7-Item (GAD-7) scale, Patient Health Questionnaire (PHQ-9) and Impact Event Scale 6 (IES-R) to evaluate the mental health conditions of 97 healthcare workers providing healthcare services in health centres and health posts (called CHPS zones) in the Greater Accra Region. Results were presented using Frequencies, Percentages, and univariate and multivariate logistic regression. Results: Overall, the majority of health workers were depressed (71.1%) in relation to COVID-19. 59.8% and 50.6% had psychological stress and anxiety respectively at the height of the COVID-19 pandemic. Family avoidance, alcohol, and role (CHO, public health nurse and other categories) were significantly associated with anxiety, depression, and stress in health workers at the height of the COVID-19 pandemic. Conclusion: Generally, approximately half of the workers at the primary levels felt depressed, anxious, or felt stressed about COVID-19. Family avoidance, alcohol and role (CHO, public health nurse and other categories) were significantly associated with anxiety, depression and stress in health workers at the height of the COVID-19 pandemic. There is a need for the health system to recognize the presence of these adverse psychological effects in primary health workers and take pragmatic steps to address them. Keywords: COVID-19 pandemic, Health workers, Anxiety, Stress, Depression, Psychological impact, Ghana Health Service. DOI: 10.7176/JHMN/112-01 Publication date: December 31st 202
    • …
    corecore