2,340 research outputs found

    Identified hadron production at high transverse momenta in p+p collisions at sqrt(NN) = 200 GeV in STAR

    Get PDF
    We report the transverse momentum (pT) distributions for identified charged pions, protons and anti-protons using events triggered by high deposit energy in the Barrel Electro-Magnetic Calorimeter (BEMC) from p + p collisions at psNN = 200 GeV. The spectra are measured around mid-rapidity (|y|<0.5) over the range of 3<pT<15 GeV/c with particle identification (PID) by the relativistic ionization energy loss (rdE/dx) in the Time Projection Chamber (TPC) in the Solenoidal Tracker at RHIC (STAR). The charged pion, proton and anti-proton spectra at high pT are compared with published results from minimum bias triggered events and the Next-Leading-Order perturbative quantum chromodynamic (NLO pQCD) calculations (DSS, KKP and AKK 2008). In addition, we present the particle ratios of pi-/pi+, pbar/p, p/pi+ and pbar/pi- in p + p collisions.Comment: 4 pages, 4 figures, Hot Quark 2008 proceedin

    Chiral Dirac fermions on the lattice using Geometric Discretisation

    Full text link
    A new approach to the problem of doubling is presented with the Dirac-Kahler (DK) theory as a starting point and using Geometric Discretisation providing us with a new way of extracting the Dirac field in the discrete setting of a hyper-cubic complex.Comment: Lattice2003(Chiral), 3 page

    Double transverse spin asymmetries in vector boson production

    Get PDF
    We investigate a helicity non-flip double transverse spin asymmetry in vector boson production in hadron-hadron scattering, which was first considered by Ralston and Soper at the tree level. It does not involve transversity functions and in principle also arises in W-boson production for which we present the expressions. The asymmetry requires observing the transverse momentum of the vector boson, but it is not suppressed by explicit inverse powers of a large energy scale. However, as we will show, inclusion of Sudakov factors causes suppression of the asymmetry, which increases with energy. Moreover, the asymmetry is shown to be approximately proportional to x_1 g_1(x_1) x_2 \bar g_1(x_2), which gives rise to additional suppression at small values of the light cone momentum fractions. This implies that it is negligible for Z or W production and is mainly of interest for \gamma^* at low energies. We also compare the asymmetry with other types of double transverse spin asymmetries and discuss how to disentangle them.Comment: 12 pages, Revtex, 2 Postscript figures, uses aps.sty, epsf.sty; figures replaced, a few minor other correction

    Open Heavy Flavor Production in Heavy Ion Collisions

    Full text link
    The interaction of heavy partons, charm and beauty, with the matter created in heavy ion collisions has been of great interest in recent years. Heavy partons were predicted to interact less strongly with the matter than light partons. In apparent contrast to these predictions, unexpectedly strong suppression of non-photonic electrons from heavy flavor decays has been seen. However, significant experimental uncertainties remain, both in the measurements themselves and in the separation of the contribution from charm and beauty, which have complicated the interpretation of these results. The current experimental situation is critically reviewed and prospects for making these measurements more easily interpretable discussed.Comment: 8 pages, 5 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee v2: typos correcte

    Monopoles and clusters

    Get PDF
    We define and study certain hyperkaehler manifolds which capture the asymptotic behaviour of the SU(2)-monopole metric in regions where monopoles break down into monopoles of lower charges. The rate at which these new metrics approximate the monopole metric is exponential, as for the Gibbons-Manton metric.Comment: v2.: relation to calorons mentioned; added explanation

    Left-right asymmetry for pion and kaon production in the semi-inclusive deep inelastic scattering process

    Full text link
    We analyze the left-right asymmetry in the semi-inclusive deep inelastic scattering (SIDIS) process without introducing any weighting functions. With the current theoretical understanding, we find that the Sivers effect plays a key role in our analysis. We use the latest parametrization of the Sivers and fragmentation functions to reanalyze the π±\pi^\pm production process and find that the results are sensitive to the parametrization. We also extend our calculation on the K±K^{\pm} production, which can help us know more about the Sivers distribution of the sea quarks and the unfavored fragmentation processes. HERMES kinematics with a proton target, COMPASS kinematics with a proton, deuteron, and neutron target (the information on the neutron target can be effectively extracted from the 3^3He target), and JLab kinematics (both 6 GeV and 12 GeV) with a proton and neutron target are considered in our paper.Comment: 7 latex pages, 11 figures, final version for publication, with references update

    Shielding Calculations on Waste Packages – The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Full text link
    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like “Monte-Carlo N-Particle Transport Code System” (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract

    A three dimensional investigation of two dimensional orbits

    Get PDF
    Orbits in the principal planes of triaxial potentials are known to be prone to unstable motion normal to those planes, so that three dimensional investigations of those orbits are needed even though they are two dimensional. We present here an investigation of such orbits in the well known logarithmic potential which shows that the third dimension must be taken into account when studying them and that the instability worsens for lower values of the forces normal to the plane. Partially chaotic orbits are present around resonances, but also in other regions. The action normal to the plane seems to be related to the isolating integral that distinguishes regular form partially chaotic orbits, but not to the integral that distinguishes partially from fully chaotic orbits.Comment: Accepted for publication in CMD

    Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

    Full text link
    A multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg, and here we concentrate our study on some issues related to the spin physics part of this project (referred to as AFTER). We study the nucleon spin structure through pppp and pdpd processes with a fixed-target experiment using the LHC proton beams, for the kinematical region with 7 TeV proton beams at the energy in center-of-mass frame of two nucleons s=115\sqrt{s}=115 GeV. We calculate and estimate the cos2ϕ\cos2\phi azimuthal asymmetries of unpolarized pppp and pdpd dilepton production processes in the Drell--Yan continuum region and at the ZZ-pole. We also calculate the sin(2ϕϕS)\sin(2\phi-\phi_S), sin(2ϕ+ϕS)\sin(2\phi+\phi_S) and sin2ϕ\sin2\phi azimuthal asymmetries of pppp and pdpd dilepton production processes with the target proton and deuteron longitudinally or transversally polarized in the Drell--Yan continuum region and around ZZ resonances region. We conclude that it is feasible to measure these azimuthal asymmetries, consequently the three-dimensional or transverse momentum dependent parton distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ

    Transverse momentum dependence in gluon distribution and fragmentation functions

    Get PDF
    We investigate the twist two gluon distribution functions for spin 1/2 hadrons, emphasizing intrinsic transverse momentum of the gluons. These functions are relevant in leading order in the inverse hard scale in scattering processes such as inclusive leptoproduction or Drell-Yan scattering, or more general in hard processes in which at least two hadrons are involved. They show up in azimuthal asymmetries. For future estimates of such observables, we discuss specific bounds on these functions.Comment: 14 pages, revtex, 7 Postscript figure
    corecore