32 research outputs found
Coarsening of "clouds" and dynamic scaling in a far-from-equilibrium model system
A two-dimensional lattice gas of two species, driven in opposite directions
by an external force, undergoes a jamming transition if the filling fraction is
sufficiently high. Using Monte Carlo simulations, we investigate the growth of
these jams ("clouds"), as the system approaches a non-equilibrium steady state
from a disordered initial state. We monitor the dynamic structure factor
and find that the component exhibits dynamic scaling, of
the form . Over a significant range
of times, we observe excellent data collapse with and .
The effects of varying filling fraction and driving force are discussed
Feedback and Fluctuations in a Totally Asymmetric Simple Exclusion Process with Finite Resources
We revisit a totally asymmetric simple exclusion process (TASEP) with open
boundaries and a global constraint on the total number of particles [Adams, et.
al. 2008 J. Stat. Mech. P06009]. In this model, the entry rate of particles
into the lattice depends on the number available in the reservoir. Thus, the
total occupation on the lattice feeds back into its filling process. Although a
simple domain wall theory provided reasonably good predictions for Monte Carlo
simulation results for certain quantities, it did not account for the
fluctuations of this feedback. We generalize the previous study and find
dramatically improved predictions for, e.g., the density profile on the lattice
and provide a better understanding of the phenomenon of "shock localization."Comment: 11 pages, 3 figures, v2: Minor change
Power Spectra of the Total Occupancy in the Totally Asymmetric Simple Exclusion Process
As a solvable and broadly applicable model system, the totally asymmetric
exclusion process enjoys iconic status in the theory of non-equilibrium phase
transitions. Here, we focus on the time dependence of the total number of
particles on a 1-dimensional open lattice, and its power spectrum. Using both
Monte Carlo simulations and analytic methods, we explore its behavior in
different characteristic regimes. In the maximal current phase and on the
coexistence line (between high/low density phases), the power spectrum displays
algebraic decay, with exponents -1.62 and -2.00, respectively. Deep within the
high/low density phases, we find pronounced \emph{oscillations}, which damp
into power laws. This behavior can be understood in terms of driven biased
diffusion with conserved noise in the bulk.Comment: 4 pages, 4 figure
Far-from-equilibrium transport with constrained resources
The totally asymmetric simple exclusion process (TASEP) is a well studied
example of far-from-equilibrium dynamics. Here, we consider a TASEP with open
boundaries but impose a global constraint on the total number of particles. In
other words, the boundary reservoirs and the system must share a finite supply
of particles. Using simulations and analytic arguments, we obtain the average
particle density and current of the system, as a function of the boundary rates
and the total number of particles. Our findings are relevant to biological
transport problems if the availability of molecular motors becomes a
rate-limiting factor.Comment: 14 pages, 7 figures, uses iopart12.clo and iopart.cl
Power Spectra of a Constrained Totally Asymmetric Simple Exclusion Process
To synthesize proteins in a cell, an mRNA has to work with a finite pool of
ribosomes. When this constraint is included in the modeling by a totally
asymmetric simple exclusion process (TASEP), non-trivial consequences emerge.
Here, we consider its effects on the power spectrum of the total occupancy,
through Monte Carlo simulations and analytical methods. New features, such as
dramatic suppressions at low frequencies, are discovered. We formulate a theory
based on a linearized Langevin equation with discrete space and time. The good
agreement between its predictions and simulation results provides some insight
into the effects of finite resoures on a TASEP.Comment: 4 pages, 2 figures v2: formatting change
Competition for finite resources
The resources in a cell are finite, which implies that the various components
of the cell must compete for resources. One such resource is the ribosomes used
during translation to create proteins. Motivated by this example, we explore
this competition by connecting two totally asymmetric simple exclusion
processes (TASEPs) to a finite pool of particles. Expanding on our previous
work, we focus on the effects on the density and current of having different
entry and exit rates.Comment: 15 pages, 9 figures, v2: minor revisions, v3: additional reference &
minor correction
Non-equilibrium statistical mechanics: From a paradigmatic model to biological transport
Unlike equilibrium statistical mechanics, with its well-established
foundations, a similar widely-accepted framework for non-equilibrium
statistical mechanics (NESM) remains elusive. Here, we review some of the many
recent activities on NESM, focusing on some of the fundamental issues and
general aspects. Using the language of stochastic Markov processes, we
emphasize general properties of the evolution of configurational probabilities,
as described by master equations. Of particular interest are systems in which
the dynamics violate detailed balance, since such systems serve to model a wide
variety of phenomena in nature. We next review two distinct approaches for
investigating such problems. One approach focuses on models sufficiently simple
to allow us to find exact, analytic, non-trivial results. We provide detailed
mathematical analyses of a one-dimensional continuous-time lattice gas, the
totally asymmetric exclusion process (TASEP). It is regarded as a paradigmatic
model for NESM, much like the role the Ising model played for equilibrium
statistical mechanics. It is also the starting point for the second approach,
which attempts to include more realistic ingredients in order to be more
applicable to systems in nature. Restricting ourselves to the area of
biophysics and cellular biology, we review a number of models that are relevant
for transport phenomena. Successes and limitations of these simple models are
also highlighted.Comment: 72 pages, 18 figures, Accepted to: Reports on Progress in Physic
Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments
The phenomenon of protein synthesis has been modeled in terms of totally
asymmetric simple exclusion processes (TASEP) since 1968. In this article, we
provide a tutorial of the biological and mathematical aspects of this approach.
We also summarize several new results, concerned with limited resources in the
cell and simple estimates for the current (protein production rate) of a TASEP
with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure