33 research outputs found

    Smad-Runx interactions during chondrocyte maturation

    Get PDF
    BACKGROUND: Intracellular signaling triggered by bone morphogenetic proteins (BMPs) results in activated Smad complexes that regulate transcription of BMP-responsive genes. However, the low specificity of Smad binding to regulatory sequences implies that additional tissue-specific transcription factors are also needed. Runx2 (Cbfal) is a transcription factor required for bone formation. We have examined the role of Smads and Runx2 in BMP induction of type X collagen, which is a marker of chondrocyte hypertrophy leading to endochondral bone formation. METHODS: Pre-hypertrophic chondrocytes from the cephalic portion of the chick embryo sternum were placed in culture in the presence or absence of rhBMP-2. Cultures were transiently transfected with DNA containing the BMP-responsive type X collagen promoter upstream of the luciferase gene. The cultures were also transfected with plasmids, causing over-expression of Smads or Runx2, or both. After 24-48 hours, cell extracts were examined for levels of luciferase expression. RESULTS: In the presence of BMP-2, chondrocytes over-expressing BMP-activated Smadl or Smad5 showed significant enhancement of luciferase production compared with that seen with BMP alone. This enhancement was not observed with over-expression of Smad2, a transforming growth factor beta (TGF-beta)-activated Smad. Overexpression of Runx2 in BMP-treated cultures increased transcriptional activity to levels similar to those seen with Smads 1 or 5. When chondrocytes were simultaneously transfected with both Runx2 and Smad 1 or 5, promoter activity was further increased, indicating that BMP-stimulated Smad activity can be augmented by increasing the levels of Runx2. CONCLUSIONS: These results implicate the skeletal tissue transcription factor Runx2 in regulation of chondrocyte hypertrophy and suggest that maximal transcription of the type X collagen gene in pre-hypertrophic chondrocytes involves interaction of BMP-stimulated Smads with Runx2. Clinical Relevance: Many skeletal abnormalities are associated with impaired regulation of chondrocyte hypertrophy in growth plates. These studies demonstrate that both BMP-activated Smads and Runx2 levels can modulate chondrocyte transition to hypertrophy

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    The vitamin A ester retinyl propionate has a unique metabolic profile and higher retinoid‐related bioactivity over retinol and retinyl palmitate in human skin models

    Get PDF
    Human skin is exposed daily to environmental stressors, which cause acute damage and inflammation. Over time this leads to morphological and visual appearance changes associated with premature aging. Topical vitamin A derivatives such as retinol (ROL), retinyl palmitate (RPalm), and retinyl propionate (RP) have been used to reverse these changes and improve the appearance of skin. This study investigated a stoichiometric comparison of these retinoids using in vitro and ex vivo skin models. Skin biopsies were treated topically to compare skin penetration and metabolism. Treated keratinocytes were evaluated for transcriptomics profiling and hyaluronic acid (HA) synthesis and treated 3D epidermal skin equivalents were stained for epidermal thickness, Ki67, and filaggrin. A retinoic acid receptor‐alpha (RARα) reporter cell line was used to compare retinoid activation levels. Results from ex vivo skin found that RP and ROL have higher penetration levels compared to RPalm. RP is metabolized primarily into ROL in the viable epidermis and dermis whereas ROL is esterified into RPalm and metabolized into the inactive retinoid 14‐hydroxy‐4,14‐retro‐retinol (14‐HRR). RP treatment yielded higher RARα activation and HA synthesis levels than ROL whereas RPalm had a null effect. In keratinocytes, RP and ROL stimulated similar gene expression patterns and pathway theme profiles. In conclusion, RP and ROL show a similar response directionality whereas RPalm response was inconsistent. Additionally, RP has a consistently higher magnitude of response compared with ROL or RPalm
    corecore