134 research outputs found

    Towards a Structural Understanding of Spore Germination in Clostridium Difficile

    Get PDF
    Clostridium difficile is a Gram-positive bacterium that causes a toxin-mediated disease, typically in individuals whose normal intestinal flora has been compromised by antibiotic therapy. C. difficile is naturally resistant to many antibiotics and produces spores that can withstand harsh environmental conditions and many disinfectants, making the infection difficult to clear and easy to spread. The infection begins when spores from the environment are ingested and germinate upon exposure to taurocholate and glycine in the digestive tract. This germination process is required to initiate infection and thus represents a good target for the development of novel therapeutics. Although spore germination is necessary for disease transmission, the molecular mechanisms regulating this process are poorly understood. Germination relies on sensing a germinant and triggering degradation of the cortex layer of the spore, which is important for spore resistance. Once the cortex is degraded, the spore can undergo outgrowth to a vegetative cell and secrete toxins to cause disease symptoms. There are several discrete steps to the proteolytic cascade that ultimately lead to cortex hydrolysis. First, the pseudoprotease CspC acts as a germinant receptor for the bile salt taurocholate; CspC then relays this signal to the subtilisin-like serine protease, CspB. CspB is required for efficient cleavage and activation of the cortex hydrolase. SleC. Upon proteolytic activation of SleC, cortex hydrolysis can proceed, which allows subsequent outgrowth. To better understand the mechanistic basis of the germination process, we solved the 1.6 â„« structure of the required germination protease, CspB, from C. perfringens (a related pathogen). This structure revealed that CspB is comprised of three domains: an associated prodomain, a subtilase domain, and a jellyroll domain. Our work significantly advanced our understanding of the proteolytic cascade that leads to germination; in particular the structure and function of the CspB protease, and the role of its three domains. We have described the four domains of the cortex hydrolase, SleC, and how they contribute to the activity of SleC. We have recently obtained diffraction-quality crystals of the pseudoprotease, CspC, from an organism more closely related to C. difficile, C. bifermentans. Our latest work, focusing on the germination receptor, CspC, has brought us closer to a three-dimensional structure of this protein, which will likely reveal how it binds ligands and functions in germination

    Dalhousie dyspnea scales: construct and content validity of pictorial scales for measuring dyspnea

    Get PDF
    BACKGROUND: Because there are no child-friendly, validated, self-report measures of dyspnea or breathlessness, we developed, and provided initial validation, of three, 7-item, pictorial scales depicting three sub-constructs of dyspnea: throat closing, chest tightness, and effort. METHODS: We developed the three scales (Throat closing, Chest tightness, and Effort) using focus groups with 25 children. Subsequently, seventy-nine children (29 children with asthma, 30 children with cystic fibrosis. and 20 children who were healthy) aged 6 to 18 years rated each picture in each series, using a 0–10 scale. In addition, each child placed each picture in each series on a 100-cm long Visual Analogue Scale, with the anchors "not at all" and "a lot". RESULTS: Children aged eight years or older rated the scales in the correct order 75% to 98% correctly, but children less than 8 years of age performed unreliably. The mean distance between each consecutive item in each pictorial scale was equal. CONCLUSION: Preliminary results revealed that children aged 8 to 18 years understood and used these three scales measuring throat closing, chest tightness, and effort appropriately. The scales appear to accurately measure the construct of breathlessness, at least at an interval level. Additional research applying these scales to clinical situations is warranted

    Joint Attention and Brain Functional Connectivity in Infants and Toddlers

    Get PDF
    Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development

    Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors that typically emerge by 24 months of age. To develop effective early interventions that can potentially ameliorate the defining deficits of ASD and improve long-term outcomes, early detection is essential. Using prospective neuroimaging of 59 6-month-old infants with a high familial risk for ASD, we show that functional connectivity magnetic resonance imaging correctly identified which individual children would receive a research clinical best-estimate diagnosis of ASD at 24 months of age. Functional brain connections were defined in 6-month-old infants that correlated with 24-month scores on measures of social behavior, language, motor development, and repetitive behavior, which are all features common to the diagnosis of ASD. A fully cross-validated machine learning algorithm applied at age 6 months had a positive predictive value of 100% [95% confidence interval (CI), 62.9 to 100], correctly predicting 9 of 11 infants who received a diagnosis of ASD at 24 months (sensitivity, 81.8%; 95% CI, 47.8 to 96.8). All 48 6-month-old infants who were not diagnosed with ASD were correctly classified [specificity, 100% (95% CI, 90.8 to 100); negative predictive value, 96.0% (95% CI, 85.1 to 99.3)]. These findings have clinical implications for early risk assessment and the feasibility of developing early preventative interventions for ASD

    Factors influencing terrestriality in primates of the Americas and Madagascar

    Get PDF
    Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.Fil: Eppley, Timothy M.. San Diego Zoo Wildlife Alliance; Estados Unidos. Portland State University; Estados UnidosFil: Hoeks, Selwyn. Radboud Universiteit Nijmegen; Países BajosFil: Chapman, Colin A.. University of KwaZulu-Natal; Sudáfrica. Wilson Center; Estados Unidos. Northwest University; China. The George Washington University; Estados UnidosFil: Ganzhorn, Jörg U.. Universitat Hamburg; AlemaniaFil: Hall, Katie. Sedgwick County Zoo; Estados UnidosFil: Owen, Megan A.. San Diego Zoo Wildlife Alliance; Estados UnidosFil: Adams, Dara B.. Humboldt State University; Estados Unidos. Ohio State University; Estados UnidosFil: Allgas, Néstor. Asociación Neotropical Primate Conservation Perú; PerúFil: Amato, Katherine R.. Northwestern University; Estados UnidosFil: Andriamahaihavana, McAntonin. Université D'antananarivo; MadagascarFil: Aristizabal, John F.. Universidad Autónoma de Ciudad Juárez; México. Universidad de los Andes; ColombiaFil: Baden, Andrea L.. City University of New York; Estados Unidos. New York Consortium In Evolutionary Primatology; Estados UnidosFil: Balestri, Michela. Oxford Brookes University (oxford Brookes University);Fil: Barnett, Adrian A.. University Of Roehampton; Reino Unido. Universidade Federal de Pernambuco; BrasilFil: Bicca Marques, Júlio César. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Bowler, Mark. University Of Suffolk; Reino Unido. San Diego Zoo Wildlife Alliance; Estados UnidosFil: Boyle, Sarah A.. Rhodes College; Estados UnidosFil: Brown, Meredith. University of Calgary; CanadáFil: Caillaud, Damien. University of California at Davis; Estados UnidosFil: Calegaro Marques, Cláudia. Universidade Federal do Rio Grande do Sul; BrasilFil: Campbell, Christina J.. California State University Northridge (calif. State Univ. Northridge);Fil: Campera, Marco. Oxford Brookes University (oxford Brookes University);Fil: Campos, Fernando A.. University of Texas at San Antonio; Estados UnidosFil: Cardoso, Tatiane S.. Museu Paraense Emílio Goeldi; BrasilFil: Carretero Pinzón, Xyomara. Proyecto Zocay; ColombiaFil: Champion, Jane. University of Calgary; CanadáFil: Chaves, Óscar M.. Universidad de Costa Rica; Costa RicaFil: Chen Kraus, Chloe. University of Yale; Estados UnidosFil: Colquhoun, Ian C.. Western University; CanadáFil: Dean, Brittany. University of Calgary; CanadáFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); Argentin

    Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization

    Get PDF
    Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography

    Investigating variation in replicability

    Get PDF
    Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of 13 classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, 10 effects replicated consistently. One effect – imagined contact reducing prejudice – showed weak support for replicability. And two effects – flag priming influencing conservatism and currency priming influencing system justification – did not replicate. We compared whether the conditions such as lab versus online or US versus international sample predicted effect magnitudes. By and large they did not. The results of this small sample of effects suggest that replicability is more dependent on the effect itself than on the sample and setting used to investigate the effect

    Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism

    Get PDF
    Neuroticism is a relatively stable personality trait characterized by negative emotionality (for example, worry and guilt)1; heritability estimated from twin studies ranges from 30 to 50%2, and SNP-based heritability ranges from 6 to 15%3,4,5,6. Increased neuroticism is associated with poorer mental and physical health7,8, translating to high economic burden9. Genome-wide association studies (GWAS) of neuroticism have identified up to 11 associated genetic loci3,4. Here we report 116 significant independent loci from a GWAS of neuroticism in 329,821 UK Biobank participants; 15 of these loci replicated at P < 0.00045 in an unrelated cohort (N = 122,867). Genetic signals were enriched in neuronal genesis and differentiation pathways, and substantial genetic correlations were found between neuroticism and depressive symptoms (rg = 0.82, standard error (s.e.) = 0.03), major depressive disorder (MDD; rg = 0.69, s.e. = 0.07) and subjective well-being (rg = –0.68, s.e. = 0.03) alongside other mental health traits. These discoveries significantly advance understanding of neuroticism and its association with MDD
    • …
    corecore