55,753 research outputs found
Sport is king: an investigation into local media coverage of women's sport in the UK East Midlands
There has been a recent interest in research into national media coverage of female sport, particularly single events, but on-going sporting activities by women are rarely reported. This paper attempts to examine this subject at the local level, looking in general at women’s sport and in particular at women’s football in the East Midlands region of the UK. Quantitative methods were used to survey local newspapers and radio stations and interviews were carried out with a range of people relevant to the field of study. The topic of sports media is framed here with reference to research into masculinities and a socialist feminist approach is used to address problems. The data showed there was a significant and on-going imbalance in the amount of coverage and even some signs of a decline in women’s football reporting, in spite of a national resurgence of the sport itself. The authors try to account for this and suggest further areas of future study
Structure of logarithmically divergent one-loop lattice Feynman integrals
For logarithmically divergent one-loop lattice Feynman integrals I(p,a),
subject to mild general conditions, we prove the following expected and crucial
structural result: I(p,a) = f(p)log(aM)+g(p)+h(p,M) up to terms which vanish
for lattice spacing a -> 0. Here p denotes collectively the external momenta
and M is a mass scale which may be chosen arbitrarily. The f(p) and h(p,M) are
shown to be universal and coincide with analogous quantities in the
corresponding continuum integral when the latter is regularized either by
momentum cut-off or dimensional regularization. The non-universal term g(p) is
shown to be a homogeneous polynomial in p of the same degree as f(p). This
structure is essential for consistency between renormalized lattice and
continuum formulations of QCD at one loop.Comment: 26 pages (after reformatting using revtex); typos corrected; to
appear in Phys.Rev.
The Ultimate Halo Mass in a LCDM Universe
In the far future of an accelerating LCDM cosmology, the cosmic web of
large-scale structure consists of a set of increasingly isolated halos in
dynamical equilibrium. We examine the approach of collisionless dark matter to
hydrostatic equilibrium using a large N-body simulation evolved to scale factor
a = 100, well beyond the vacuum--matter equality epoch, a_eq ~ 0.75, and 53/h
Gyr into the future for a concordance model universe (Omega_m ~ 0.3,
Omega_Lambda ~ 0.7). The radial phase-space structure of halos -- characterized
at a < a_eq by a pair of zero-velocity surfaces that bracket a dynamically
active accretion region -- simplifies at a > 10 a_eq when these surfaces merge
to create a single zero-velocity surface, clearly defining the halo outer
boundary, rhalo, and its enclosed mass, mhalo. This boundary approaches a fixed
physical size encompassing a mean interior density ~ 5 times the critical
density, similar to the turnaround value in a classical Einstein-deSitter
model. We relate mhalo to other scales currently used to define halo mass
(m200, mvir, m180b) and find that m200 is approximately half of the total
asymptotic cluster mass, while m180b follows the evolution of the inner zero
velocity surface for a < 2 but becomes much larger than the total bound mass
for a > 3. The radial density profile of all bound halo material is well fit by
a truncated Hernquist profile. An NFW profile provides a somewhat better fit
interior to r200 but is much too shallow in the range r200 < r < rhalo.Comment: 5 pages, 3 figures, submitted to MNRAS letter
Etching of High Purity Zinc
A method of etching high purity zinc to reveal various etch figures on {101ÂŻ0} planes is presented in this
paper. Etch figures are formed by polishing in a dichromic acid solution after the introduction of mercury
to the crystal surface. No measurable aging time is required to form etch figures at newly formed dislocation
sites when mercury is on the surface prior to deformation. The mercury concentrates at the sites
where etch figures form and may be removed by vacuum distillation and chemical polishing before it appreciably
affects the purity of the bulk of the crystal
Dislocations and etch figures in high purity zinc
A method of etching high purity zinc single crystals to reveal various etch figures on {1010} planes is presented in the preceding paper. The procedure involves the introduction of mercury to the crystal surface prior to a chemical polish with dichromic acid. The mercury was found to be concentrated at the etch figures. This paper presents the results of several experiments which support the conclusion that there exists a one-to-one correspondence between etch figures and dislocations. Some observations of slip on (0001) basal planes and {1212} pyramidal planes, and of twinning in zinc are also presented
On the fourth root prescription for dynamical staggered fermions
With the aim of resolving theoretical issues associated with the fourth root
prescription for dynamical staggered fermions in Lattice QCD simulations, we
consider the problem of finding a viable lattice Dirac operator D such that
(det D_{staggered})^{1/4} = det D. Working in the flavour field representation
we show that in the free field case there is a simple and natural candidate D
satisfying this relation, and we show that it has acceptable locality behavior:
exponentially local with localisation range vanishing ~ (a/m)^{1/2} for lattice
spacing a -> 0. Prospects for the interacting case are also discussed, although
we do not solve this case here.Comment: 29 pages, 2 figures; some revision and streamlining of the
discussions; results unchanged; to appear in PR
Orientation Dependence of a Dislocation Etch for Zinc
The dislocation etch for (101-[bar]0] surfaces of zinc reported by Brandt, Adams, and Vreeland have been further explored. Additional surface orientations have been found where dislocation etching takes place. These orientations cover an area located between 3 degrees and 12.2 degrees to the [0001], and the area is symmetric about that axis. Attempts to produce dislocation etching on within 2 degrees of (0001) were generally unsuccessful. This is in contrast to etching of many crystals which takes place only within a few degrees of a low index plane
Hill's Equation with Random Forcing Parameters: Determination of Growth Rates through Random Matrices
This paper derives expressions for the growth rates for the random 2 x 2
matrices that result from solutions to the random Hill's equation. The
parameters that appear in Hill's equation include the forcing strength and
oscillation frequency. The development of the solutions to this periodic
differential equation can be described by a discrete map, where the matrix
elements are given by the principal solutions for each cycle. Variations in the
forcing strength and oscillation frequency lead to matrix elements that vary
from cycle to cycle. This paper presents an analysis of the growth rates
including cases where all of the cycles are highly unstable, where some cycles
are near the stability border, and where the map would be stable in the absence
of fluctuations. For all of these regimes, we provide expressions for the
growth rates of the matrices that describe the solutions.Comment: 22 pages, 3 figure
Autophagy: A cyto-protective mechanism which prevents primary human hepatocyte apoptosis during oxidative stress
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes
- …