9,419 research outputs found

    Slice sampling covariance hyperparameters of latent Gaussian models

    Get PDF
    The Gaussian process (GP) is a popular way to specify dependencies between random variables in a probabilistic model. In the Bayesian framework the covariance structure can be specified using unknown hyperparameters. Integrating over these hyperparameters considers different possible explanations for the data when making predictions. This integration is often performed using Markov chain Monte Carlo (MCMC) sampling. However, with non-Gaussian observations standard hyperparameter sampling approaches require careful tuning and may converge slowly. In this paper we present a slice sampling approach that requires little tuning while mixing well in both strong- and weak-data regimes.Comment: 9 pages, 4 figures, 4 algorithms. Minor corrections to previous version. This version to appear in Advances in Neural Information Processing Systems (NIPS) 23, 201

    Efficient Optimization of Loops and Limits with Randomized Telescoping Sums

    Full text link
    We consider optimization problems in which the objective requires an inner loop with many steps or is the limit of a sequence of increasingly costly approximations. Meta-learning, training recurrent neural networks, and optimization of the solutions to differential equations are all examples of optimization problems with this character. In such problems, it can be expensive to compute the objective function value and its gradient, but truncating the loop or using less accurate approximations can induce biases that damage the overall solution. We propose randomized telescope (RT) gradient estimators, which represent the objective as the sum of a telescoping series and sample linear combinations of terms to provide cheap unbiased gradient estimates. We identify conditions under which RT estimators achieve optimization convergence rates independent of the length of the loop or the required accuracy of the approximation. We also derive a method for tuning RT estimators online to maximize a lower bound on the expected decrease in loss per unit of computation. We evaluate our adaptive RT estimators on a range of applications including meta-optimization of learning rates, variational inference of ODE parameters, and training an LSTM to model long sequences

    Graph-Sparse LDA: A Topic Model with Structured Sparsity

    Full text link
    Originally designed to model text, topic modeling has become a powerful tool for uncovering latent structure in domains including medicine, finance, and vision. The goals for the model vary depending on the application: in some cases, the discovered topics may be used for prediction or some other downstream task. In other cases, the content of the topic itself may be of intrinsic scientific interest. Unfortunately, even using modern sparse techniques, the discovered topics are often difficult to interpret due to the high dimensionality of the underlying space. To improve topic interpretability, we introduce Graph-Sparse LDA, a hierarchical topic model that leverages knowledge of relationships between words (e.g., as encoded by an ontology). In our model, topics are summarized by a few latent concept-words from the underlying graph that explain the observed words. Graph-Sparse LDA recovers sparse, interpretable summaries on two real-world biomedical datasets while matching state-of-the-art prediction performance

    Practical Bayesian Optimization of Machine Learning Algorithms

    Full text link
    Machine learning algorithms frequently require careful tuning of model hyperparameters, regularization terms, and optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert experience, unwritten rules of thumb, or sometimes brute-force search. Much more appealing is the idea of developing automatic approaches which can optimize the performance of a given learning algorithm to the task at hand. In this work, we consider the automatic tuning problem within the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). The tractable posterior distribution induced by the GP leads to efficient use of the information gathered by previous experiments, enabling optimal choices about what parameters to try next. Here we show how the effects of the Gaussian process prior and the associated inference procedure can have a large impact on the success or failure of Bayesian optimization. We show that thoughtful choices can lead to results that exceed expert-level performance in tuning machine learning algorithms. We also describe new algorithms that take into account the variable cost (duration) of learning experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization on a diverse set of contemporary algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks
    corecore