1,265 research outputs found
Heavy-quark azimuthal momentum correlations as a sensitive probe of thermalization
In high-energy nuclear collisions the degree of thermalization at the
partonic level is a key issue. Due to their large mass, heavy quarks and their
possible participation in the collective flow of the QCD-medium constitute a
powerful probe for thermalization. We present studies with PYTHIA for p+p
collisions at the top LHC energy of = 14 TeV applying the
two-particle transverse momentum correlator
to pairs of heavy-quark hadrons and their semi-leptonic decay products as a
function of their relative azimuth. Modifications or even the complete absence
of initially existing correlations in Pb+Pb collisions might indicate
thermalization at the partonic level.Comment: 7 pages, 5 figs.; accepted for publication in Nucl. Phys.
Has the Quark-Gluon Plasma been seen?
Data from the first three years of running at RHIC are reviewed and put into
context with data obtained previously at the AGS and SPS and with the physics
question of creation of a quark-gluon plasma in high energy heavy ion
collisions. Also some very recent and still preliminary data from run4 are
included.Comment: plenary paper, Lepton-Photon 2005, Uppsala, Swede
Traces of Thermalization from Transverse Momentum Fluctuations in Nuclear Collisions
Scattering of particles produced in Au+Au collisions at RHIC can wrestle the
system into a state near local thermal equilibrium. I illustrate how
measurements of the centrality dependence of the mean transverse momentum and
its fluctuations can exhibit this thermalization.Comment: 4 pages, 2 eps figures, final version to appear in PR
Medium Modifications of Hadron Properties and Partonic Processes
Chiral symmetry is one of the most fundamental symmetries in QCD. It is
closely connected to hadron properties in the nuclear medium via the reduction
of the quark condensate , manifesting the partial restoration of
chiral symmetry. To better understand this important issue, a number of
Jefferson Lab experiments over the past decade have focused on understanding
properties of mesons and nucleons in the nuclear medium, often benefiting from
the high polarization and luminosity of the CEBAF accelerator. In particular, a
novel, accurate, polarization transfer measurement technique revealed for the
first time a strong indication that the bound proton electromagnetic form
factors in 4He may be modified compared to those in the vacuum. Second, the
photoproduction of vector mesons on various nuclei has been measured via their
decay to e+e- to study possible in-medium effects on the properties of the rho
meson. In this experiment, no significant mass shift and some broadening
consistent with expected collisional broadening for the rho meson has been
observed, providing tight constraints on model calculations. Finally, processes
involving in-medium parton propagation have been studied. The medium
modifications of the quark fragmentation functions have been extracted with
much higher statistical accuracy than previously possible.Comment: to appear in J. Phys.: Conf. Proc. "New Insights into the Structure
of Matter: The First Decade of Science at Jefferson Lab", eds. D.
Higinbotham, W. Melnitchouk, A. Thomas; added reference
System-size dependence of the pion freeze-out volume as a potential signature for the phase transition to a Quark Gluon Plasma
Hanburry-Brown-Twiss (HBT) correlation functions and radii of negatively
charged pions from C+C, Si+Si, Cu+Cu, and In+In at lower RHIC/SPS energies are
calculated with the UrQMD transport model and the CRAB analyzing program. We
find a minimum in the excitation function of the pion freeze-out volume at low
transverse momenta and around GeV which can be related to
the transition from hadronic to string matter (which might be interpreted as a
pre-cursor of the QGP). The existence of the minimum is explained by the
competition of two mechanisms of the particle production, resonance decays and
string formation/fragmentation.Comment: 12 pages, 4 fig
Electromagnetic Probes
A review is presented of dilepton and real photon measurements in
relativistic heavy ion collisions over a very broad energy range from the low
energies of the BEVALAC up to the highest energies available at RHIC. The
dileptons cover the invariant mass range \mll = 0 - 2.5 GeV/c, i.e. the
continuum at low and intermediate masses and the light vector mesons, . The review includes also measurements of the light vector mesons
in elementary reactions.Comment: To be published in Landolt-Boernstein Volume 1-23A; 40 pages, 24
figures. Final version updated with small changes to the text, updated
references and updated figure
Large mass dileptons from the passage of jets through quark gluon plasma
We calculate the emission of large mass dileptons originating from the
annihilation of quark jets passing through quark gluon plasma. Considering
central collisions of heavy nuclei at SPS, RHIC and LHC energies, we find that
the yield due to the jet-plasma interaction gets progressively larger as the
collision energy increases. We find it to be negligible at SPS energies, of the
order of the Drell-Yan contribution and much larger than the normal thermal
yield at RHIC energies and up to a factor of ten larger than the Drell-Yan
contribution at LHC energies. An observation of this new dilepton source would
confirm the occurrence of jet-plasma interactions and of conditions suitable
for jet-quenching to take place.Comment: 9 pages, 11 figures; references added, improved calculation,
conclusions unchange
Dileptons in High-Energy Heavy-Ion Collisions
The current status of our understanding of dilepton production in
ultrarelativistic heavy-ion collisions is discussed with special emphasis on
signals from the (approach towards) chirally restored and deconfined phases. In
particular, recent results of the CERN-SPS low-energy runs are compared to
model predictions and interpreted. Prospects for RHIC experiments are given.Comment: Invited talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; 1 Latex and
9 eps-/ps-files Reoprt No.: SUNY-NTG-02-0
In-medium hadronic spectral functions through the soft-wall holographic model of QCD
We study the scalar glueball and vector meson spectral functions in a hot and
dense medium by means of the soft-wall holographic model of QCD. Finite
temperature and density effects are implemented through the AdS/RN metric. We
analyse the behaviour of the hadron masses and widths in the plane,
and compare our results with the experimental ones and with other theoretical
determinations.Comment: 16 pages, 6 figures. matching the published versio
A Hadron Blind Detector for the PHENIX Experiment
A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the
PHENIX experiment at RHIC. The HBD will allow a precise measurement of
electron-positron pairs from the decay of the light vector mesons and the
low-mass pair continuum in heavy-ion collisions. The detector consists of a 50
cm long radiator filled with pure CF4 and directly coupled in a windowless
configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI
photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding
- …