4,447 research outputs found

    Asymptotically Stationary and Static Space-times and Shear-free Null Geodesic Congruences

    Full text link
    In classical electromagnetic theory, one formally defines the complex dipole moment (the electric plus 'i' magnetic dipole) and then computes (and defines) the complex center of charge by transforming to a complex frame where the complex dipole moment vanishes. Analogously in asymptotically flat space-times it has been shown that one can determine the complex center of mass by transforming the complex gravitational dipole (mass dipole plus 'i' angular momentum) (via an asymptotic tetrad trasnformation) to a frame where the complex dipole vanishes. We apply this procedure to such space-times which are asymptotically stationary or static, and observe that the calculations can be performed exactly, without any use of the approximation schemes which must be employed in general. In particular, we are able to exactly calculate complex center of mass and charge world-lines for such space-times, and - as a special case - when these two complex world-lines coincide, we recover the Dirac value of the gyromagnetic ratio.Comment: 11 page

    A rugged electron/ion source for spacecraft charging experiments

    Get PDF
    A simple, novel technique was developed for generating a large-diameter, uniform electron beam with appropriate current density for spacecraft charging studies

    Development of a continuous broad-energy-spectrum electron source

    Get PDF
    The development of a practical prototype, large-area, continuous-spectrum, multienergy electron source to simulate the lower energy (approx = 1 to 30 keV) portion of the geosynchronous orbit electron environment was investigated. The results of future materials-charging tests using this multienergy source should significantly improve the understanding of actual in-orbit charging processes and should help to resolve some of the descrepancies between predicted and observed spacecraft materials performance

    Laboratory studies of spacecraft response to transient discharge pulses

    Get PDF
    The in-orbit measurement of spacecraft discharge properties was investigated. The experiments include design and fabrication of appropriate sensors and effects of spacecraft electromagnetic responses on the interpretation of the discharge data. Electric field sensors especially designed to response to high-speed transient signals were installed on a mock-up of a satellite. The simple mock-up was basically a sheet of aluminum rolled to form a cylinder. A movable spark-discharge noise source designed to be electromagnetically isolated from its power supply system was used to induce transient signals at various locations on the spacecraft's outer surface. The measurements and their implications are described. It is concluded that practical orbital measurements to define discharge noise source properties should be possible, and that simple mock-ups of the type described below are useful in sensor system design and data interpretation

    Transient response measurements on a satellite system

    Get PDF
    A set of instruments designed to detect the occurance of electrical breakdown was flown on a synchronous-orbit satellite. The LeRC sensors were installed on cables inside the vehicle. Accordingly, they respond to signals coupled into the satellite wiring system. The SRI sensors were located on the exterior of the vehicle and detected the RF noise pulses associated with surface breakdowns. The results of the earlier SRI program are being used to design and develop a set of intrumentation suitable for inclusion as a general piggy-back package for the detection of the onset of satellite charging and breakdowns on synchronous orbit satellites

    The Real Meaning of Complex Minkowski-Space World-Lines

    Full text link
    In connection with the study of shear-free null geodesics in Minkowski space, we investigate the real geometric effects in real Minkowski space that are induced by and associated with complex world-lines in complex Minkowski space. It was already known, in a formal manner, that complex analytic curves in complex Minkowski space induce shear-free null geodesic congruences. Here we look at the direct geometric connections of the complex line and the real structures. Among other items, we show, in particular, how a complex world-line projects into the real Minkowski space in the form of a real shear-free null geodesic congruence.Comment: 16 page

    Super star cluster feedback driving ionization, shocks and outflows in the halo of the nearby starburst ESO 338-IG04

    Full text link
    Stellar feedback strongly affects the interstellar medium (ISM) of galaxies. Stellar feedback in the first galaxies likely plays a major role in enabling the escape of LyC photons, which contribute to the re-ionization of the Universe. Nearby starburst galaxies serve as local analogues allowing for a spatially resolved assessment of the feedback processes in these galaxies. We characterize the feedback effects from the star clusters in the local high-redshift analogue ESO 338-IG04 on the ISM and compare the results with the properties of the most massive clusters. We use high quality VLT/MUSE optical integral field data to derive the physical properties of the ISM such as ionization, density, shocks, and perform new fitting of the spectral energy distributions of the brightest clusters in ESO 338-IG04 from HST imaging. ESO 338-IG04 has a large ionized halo which we detect to a distance of 9 kpc. We identify 4 Wolf-Rayet (WR) clusters based on the blue and red WR bump. We follow previously identified ionization cones and find that the ionization of the halo increases with distance. Analysis of the galaxy kinematics shows two complex outflows driven by the numerous young clusters in the galaxy. We find a ring of shocked emission traced by an enhanced [OI]/Hα\alpha ratio surrounding the starburst and at the end of the outflow. Finally we detect nitrogen enriched gas associated with the outflow, likely caused by the WR stars in the massive star clusters. Photo-ionization dominates the central starburst and sets the ionization structure of the entire halo, resulting in a density bounded halo, facilitating the escape of LyC photons. Outside the central starburst, shocks triggered by an expanding super bubble become important. The shocks at the end of the outflow suggest interaction between the hot outflowing material and the more quiescent halo gas.Comment: Accepted for publication in Astronomy and Astrophysics, 22 pages, 15 figure

    Using nonlinear optical networks for optimization: primer of the ant colony algorithm

    No full text
    Using nonlinear Erbium doped optical fiber network we have implemented an optimization algorithm for the famous problem of finding the shortest path on the map for the ant colony to travel to the foraging area
    • …
    corecore