60 research outputs found

    True Dielectric and Ideal Conductor in Theory of the Dielectric Function for Coulomb System

    Full text link
    On the basis of the exact relations the general formula for the static dielectric permittivity e(q,0) for Coulomb system is found in the region of small wave vectors q. The obtained formuladescribes the dielectric function e(q,0) of the Coulomb system in both states in the "metallic" state and in the "dielectric" one. The parameter which determines possible states of the Coulomb system - from the "true" dielectric till the "ideal" conductor is found. The exact relation for the pair correlation function for two-component system of electrons and nuclei g_ei(r) is found for the arbitrary thermodynamic parameters.Comment: 5 pages, no figure

    Dichotomous Hamiltonians with Unbounded Entries and Solutions of Riccati Equations

    Full text link
    An operator Riccati equation from systems theory is considered in the case that all entries of the associated Hamiltonian are unbounded. Using a certain dichotomy property of the Hamiltonian and its symmetry with respect to two different indefinite inner products, we prove the existence of nonnegative and nonpositive solutions of the Riccati equation. Moreover, conditions for the boundedness and uniqueness of these solutions are established.Comment: 31 pages, 3 figures; proof of uniqueness of solutions added; to appear in Journal of Evolution Equation

    Approximate resonance states in the semigroup decomposition of resonance evolution

    Full text link
    The semigroup decomposition formalism makes use of the functional model for C.0C_{.0} class contractive semigroups for the description of the time evolution of resonances. For a given scattering problem the formalism allows for the association of a definite Hilbert space state with a scattering resonance. This state defines a decomposition of matrix elements of the evolution into a term evolving according to a semigroup law and a background term. We discuss the case of multiple resonances and give a bound on the size of the background term. As an example we treat a simple problem of scattering from a square barrier potential on the half-line.Comment: LaTex 22 pages 3 figure

    Matricial Baxter's theorem with a Nehari sequence

    Get PDF
    In the theory of orthogonal polynomials, (non‐trivial) probability measures on the unit circle are parametrized by the Verblunsky coefficients. Baxter's theorem asserts that such a measure is absolutely continuous and has positive density with summable Fourier coefficients if and only if its Verblusnky coefficients are summable. This note presents a version of Baxter's theorem in the matrix case from a viewpoint of the Nehari problem

    Meromorphic Approximants to Complex Cauchy Transforms with Polar Singularities

    Full text link
    We study AAK-type meromorphic approximants to functions FF, where FF is a sum of a rational function RR and a Cauchy transform of a complex measure λ\lambda with compact regular support included in (1,1)(-1,1), whose argument has bounded variation on the support. The approximation is understood in LpL^p-norm of the unit circle, p2p\geq2. We obtain that the counting measures of poles of the approximants converge to the Green equilibrium distribution on the support of λ\lambda relative to the unit disk, that the approximants themselves converge in capacity to FF, and that the poles of RR attract at least as many poles of the approximants as their multiplicity and not much more.Comment: 39 pages, 4 figure

    Operator interpretation of resonances generated by some operator matrices

    Full text link
    We consider the analytic continuation of the transfer function for a 2x2 matrix Hamiltonian into the unphysical sheets of the energy Riemann surface. We construct a family of non-selfadjoint operators which reproduce certain parts of the transfer-function spectrum including resonances situated on the unphysical sheets neighboring the physical sheet. On this basis, completeness and basis properties for the root vectors of the transfer function (including those for the resonances) are proved.Comment: LaTeX, 15 pages, no figures; Contribution to Proceedings of the Mark Krein International Conference on Operator Theory and Applications, Odessa, August 18-22, 199

    Inverse spectral problems for energy-dependent Sturm-Liouville equations

    Full text link
    We study the inverse spectral problem of reconstructing energy-dependent Sturm-Liouville equations from their Dirichlet spectra and sequences of the norming constants. For the class of problems under consideration, we give a complete description of the corresponding spectral data, suggest a reconstruction algorithm, and establish uniqueness of reconstruction. The approach is based on connection between spectral problems for energy-dependent Sturm-Liouville equations and for Dirac operators of special form.Comment: AMS-LaTeX, 28 page

    Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas

    Full text link
    The electron-electron, electron-ion, ion-ion and charge-charge static structure factors are calculated for alkali (at T = 30 000 K, 60 000 K, n (e) = 0.7 x 10(21) A center dot 1.1 x 10(22) cm(-3)) and Be2+ (at T = 20 eV, n (e) = 2.5 x 10(23) cm(-3)) plasmas using the method described by Gregori et al. The dynamic structure factors for alkali plasmas are calculated at T = 30 000 K, n (e) = 1.74 x 10(20), 1.11 x 10(22) cm(-3) using the method of moments developed by Adamjan et al. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the repulsion due to the Pauli exclusion principle. The repulsive part of the Hellmann-Gurskii-Krasko (HGK) potential reflects important features of the ion structure. Our results on the static structure factors for Be2+ plasma deviate from the data obtained by Gregori et al., while our dynamic structure factors are in a reasonable agreement with those of Adamyan et al.: at higher values of k and with increasing k the curves damp down while at lower values of k, and especially at higher electron coupling, we observe sharp peaks also reported in the mentioned work. For lower electron coupling the dynamic structure factors of Li+, Na+, K+, Rb+ and Cs+ do not differ while at higher electron coupling these curves split. As the number of shell electrons increases from Li+ to Cs+ the curves shift in the direction of low absolute value of omega and their heights diminish. We conclude that the short range forces, which we take into account by means of the HGK model potential, which deviates from the Coulomb and Deutsch ones, influence the static and dynamic structure factors significantly.The work has been realised at the Humboldt University at Berlin (Germany). One of the authors (S. P. Sadykova) would like to express sincere thanks to the Erasmus Mundus Program of the EU for the financial support and especially to Mr. M. Parske for his aid, to the Institute of Physics, Humboldt University at Berlin, for the support which made her participation at some scientific Conferences possible; I. M. T. acknowledges the financial support of the Spanish Ministerio de Educacion y Ciencia Project No. ENE2007-67406-C02-02/FTN and valuable discussions with Dr. D. Gericke.Sadykova, SP.; Ebeling, W.; Tkachenko Gorski, IM. (2011). Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas. European Physical Journal D. 61(1):117-130. https://doi.org/10.1140/epjd/e2010-10118-yS117130611G. Gregori, O.L. Landen, S.H. Glenzer, Phys. Rev. E 74, 026402 (2006)G. Gregori, A. Ravasio, A. Höll, S.H. Glenzer, S.J. Rose, High Energy Density Physics 3, 99 (2007)V.M. Adamyan, I.M. Tkachenko, Teplofiz. Vys. Temp. 21, 417 (1983) [High Temp. (USA) 21, 307 (1983)]V.M. Adamyan, T. Meyer, I.M. Tkachenko, Fiz. Plazmy 11, 826 (1985) [Sov. J. Plasma Phys. 11, 481 (1985)]S.V. Adamjan, I.M. Tkachenko, J.L. Muñoz-Cobo, G. Verdú Martín, Phys. Rev. E 48, 2067 (1993)V.M. Adamyan, I.M. Tkachenko, Contrib. Plasma Phys. 43, 252 (2003)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 76 (2009)M.J. Rosseinsky, K. Prassides, Nature 464, 39 (2010)Physics and Chemistry of Alkali Metal Adsorption, edited by H.P. Bonzel, A.M. Bradshaw, G. Ertl (Elsevier, Amsterdam, 1989), Materials Science Monographs, Vol. 57A.N. Klyucharev, N.N. Bezuglov, A.A. Matveev, A.A. Mihajlov, Lj.M. Ignjatović, M.S. Dimitrijević, New Astron. Rev. 51, 547 (2007)F. Hensel, Liquid Metals, edited by R. Evans, D.A. Greenwood, IOP Conf. Ser. No. 30 (IPPS, London, 1977)F. Hensel, S. Juengst, F. Noll, R. Winter, In Localisation and Metal Insulator Transitions, edited by D. Adler, H. Fritsche (Plenum Press, New York, 1985)N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974)H. Hess, Physics of nonideal plasmas, edited by W. Ebeling, A. Foerster, R. Radtke, B.G. Teubner (Leipzig, 1992)V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 388 (2009)H. Ebert, Physikalisches Taschenbuch (F. Vieweg & Sohn, Braunschweig, 1967)S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, O.L. Landen, Phys. Rev. Lett. 90, 175002 (2003)G. Gregori, S.H. Glenzer, H.-K. Chung, D.H. Froula, R.W. Lee, N.B. Meezan, J.D. Moody, C. Niemann, O.L. Landen, B. Holst, R. Redmer, S.P. Regan, H. Sawada, J. Quant. Spectrosc. Radiat. Transfer 99, 225237 (2006)D. Riley, N.C. Woolsey, D. McSherry, I. Weaver, A. Djaoui, E. Nardi, Phys. Rev. Lett. 84, 1704 (2000)S.H. Glenzer, Phys. Rev. Lett. 98, 065002 (2007)J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975)A. Höll, Th. Bornath, L. Cao, T. Döppner, S. Düsterer, E. Föster, C. Fortmann, S.H. Glenzer, G. Gregori, T. Laarmann, K.-H. Meiwes-Broer, A. Przystawik, P. Radcliffe, R. Redmer, H. Reinholz, G. Röpke, R. Thiele, J. Tiggesbäumker, S. Toleikis, N.X. Truong, T. Tschentscher, I. Ushmann, U. Zastrau, High Energy Density Phys. 3, 120 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, G.M. Meirkhanova, I.M. Tkachenko, Phys. Rev. E 76, 026403 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, I.M. Tkachenko, G. Zwicknagel, Phys. Rev. E 81, 026402 (2010)J.P. Hansen, I.R. Mc. Donald, Phys. Rev. A 23, 2041 (1981)J.P. Hansen, E.L. Polock, I.R. McDonald, Phys. Rev. Lett. 32, 277 (1974)V. Schwarz, B. Holst, T. Bornath, C. Fortmann, W-D. Kraeft, R. Thiele, R. Redmer, G. Gregori, H. Ja Leed, T. Döppner, S.H. Glenzer, High Energy Density Phys. 5, 1 (2009)D.O. Gericke, K. Wünsch, J. Vorberger, Nucl. Instrum. Methods Phys. Res. A 606, 142 (2009)B. Bernu, D. Ceperley, Quantum Monte Carlo Methods in Physics and Chemistry, edited by M.P. Nightingale, C. Umrigar (Kluwer Academic Publishers, Boston, 1999), NATO ASI Series, Series C, Mathematical and Physical Sciences, Vol. C-525G. Kelbg, Ann. Physik 13 354 (1964)C. Deutsch, Phys. Lett. A 60, 317 (1977)H. Minoo, M.M. Gombert, C. Deutsch, Phys. Rev. A 23, 924 (1981)W. Ebeling, G.E. Norman, A.A. Valuev, I. Valuev, Contrib. Plasma Phys. 39, 61 (1999)A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys. A. 36, 5957 (2003)H. Hellmann, J. Chem. Phys. 3, 61 (1935)H. Hellmann, Acta Fizicochem. USSR 1, 913 (1935)H. Hellmann, Acta Fizicochem. USSR 4, 225 (1936)H. Hellmann, W. Kassatotschkin, Acta Fizicochem. USSR 5, 23 (1936)W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966)V. Heine, M.L. Cohen, D. Weaire, Psevdopotenzcial'naya Teoriya (Mir, Moskva, 1973)V. Heine, The pseudopotential concept, edited by H. Ehrenreich, F. Seitz, D. Turnbull, Solid State Physics 24, 1 (Academic, New York 1970)G.L. Krasko, Z.A. Gurskii, JETP Lett. 9, 363 (1969)W. Ebeling, W.-D. Kraeft, D. Kremp, Theory of Bound State and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976)W. Zimdahl, W. Ebeling, Ann. Phys. (Leipzig) 34, 9 (1977)W. Ebeling, C.-V. Meister, R. Saendig, 13 ICPIG (Berlin, 1977) 725W. Ebeling, C.V. Meister, R. Saendig, W.-D. Kraeft, Ann. Phys. 491, 321 (1979)N.N. Bogolyubov, Dynamical Theory Problems in Statistical Physics (in Russian) (GITTL, Moscow, 1946)N.N. Bogolyubov, Studies in Statistical Mechanics, Engl. Transl., edited by J. De Boer, G.E. Uhlenbeck (North-Holland, Amsterdam, 1962)H. Falkenhagen, Theorie der Elektrolyte (S. Hirzel Verlag, Leipzig, 1971), p. 369Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, Eur. Phys. J. D 8, 299 (2000)P. Seuferling, J. Vogel, C. Toepffer, Phys. Rev. A 40, 323 (1989)L. Szasz, Pseudopotential Theory of Atoms and Molecules (Wiley-Intersc., New York, 1985)W.H.E. Schwarz, Acta Phys. Hung. 27, 391 (1969)W.H.E. Schwarz, Theor. Chim. Acta 11, 307 (1968)N.P. Kovalenko, Yu.P. Krasnyj, U. Krey, Physics of Amorphous Metalls (Wiley-VCH, Weinheim, 2001)Z.A. Gurski, G.L. Krasko, Doklady Akademii Nauk SSSR (in Russian) 197, 810 (1971)C. Fiolhais, J.P. Perdew, S.Q. Armster, J.M. MacLaren, Phys. Rev. B 51, 14001 (1995)S.S. Dalgic, S. Dalgic, G. Tezgor, Phys. Chem. Liq. 40, 539, (2002)E.M. Apfelbaum, Phys. Chem. Liq., 48, 534 (2010)Yu.V. Arkhipov, A.E. Davletov, Phys. Lett. A 247, 339 (1998)W. Ebeling, J. Ortner, Physica Scripta T 75, 93 (1998)J. Ortner, F. Schautz, W. Ebeling, Phys. Rev. E 56, 4665 (1997)N.I. Akhieser, The classical Moment Problem (Oliver and Boyd, London, 1965)M.G. Krein, A.A. Nudel'man, The Markov Moment Problem and External Problems (American Mathematical Society, Translations, New York, 1977)M.J. Corbatón, I.M. Tkachenko, Int. Conference on Strongly Coupled Coulomb Systems (SCCS2008), Camerino, Italy, July-August, 2008, Book of Abstracts, p. 90V.M. Adamyan, A.A. Mihajlov, N.M. Sakan, V.A. Srećković, I.M. Tkachenko, J. Phys. A: Math. Theor. 42, 214005 (2009)S. Ichimaru, Statistical Plasma Physics, Vol. I: Basic Principles (Addison-Wesley, Redwood City, 1992)W. Ebeling, A. Foerster, W. Richert, H. Hess, Physics A 150, 159 (1988)H. Wagenknecht, W. Ebeling, A. Förster, Contrib. Plasma Phys. 41, 15 (2001
    corecore