66 research outputs found

    The large-scale general-relativistic correction for Newtonian mocks

    Full text link
    We clarify the subtle issue of finding the correct mapping of Newtonian simulations to light-cone observables at very large distance scales. A faithful general-relativistic interpretation specifies a gauge, i.e. a chart that relates the simulation data to points of the space-time manifold. It has already been pointed out that the implicit gauge choice of Newtonian simulations is indeed different from the Poisson gauge that is commonly adopted for relativistic calculations, the difference being most significant at large scales. It is therefore inconsistent, for example, to predict weak-lensing observables from simulations unless this gauge issue is properly accounted for. Using perturbation theory as well as fully relativistic N-body simulations we quantify the systematic error introduced this way, and we discuss several solutions that would render the calculations relativistically self-consistent.Comment: 10 pages, 5 figures; v2: minor revision with additional content, matches accepted manuscrip

    Dissipative fields in de Sitter and black hole spacetimes: Quantum entanglement due to pair production and dissipation

    Full text link
    For free fields, pair creation in expanding universes is associated with the building up of correlations that lead to nonseparable states, i.e., quantum mechanically entangled ones. For dissipative fields, i.e., fields coupled to an environment, there is a competition between the squeezing of the state and the coupling to the external bath. We compute the final coherence level for dissipative fields that propagate in a two-dimensional de Sitter space, and we characterize the domain in parameter space where the state remains nonseparable. We then apply our analysis to (analogue) Hawking radiation by exploiting the close relationship between Lorentz violating theories propagating in de Sitter and black hole metrics. We establish the robustness of the spectrum and find that the entanglement among Hawking pairs is generally much stronger than that among pairs of quanta with opposite momenta.Comment: Final version published in prd, 22 page

    N-body methods for relativistic cosmology

    Full text link
    We present a framework for general relativistic N-body simulations in the regime of weak gravitational fields. In this approach, Einstein's equations are expanded in terms of metric perturbations about a Friedmann-Lema\^itre background, which are assumed to remain small. The metric perturbations themselves are only kept to linear order, but we keep their first spatial derivatives to second order and treat their second spatial derivatives as well as sources of stress-energy fully non-perturbatively. The evolution of matter is modelled by an N-body ensemble which can consist of free-streaming nonrelativistic (e.g. cold dark matter) or relativistic particle species (e.g. cosmic neutrinos), but the framework is fully general and also allows for other sources of stress-energy, in particular additional relativistic sources like modified-gravity models or topological defects. We compare our method with the traditional Newtonian approach and argue that relativistic methods are conceptually more robust and flexible, at the cost of a moderate increase of numerical difficulty. However, for a LambdaCDM cosmology, where nonrelativistic matter is the only source of perturbations, the relativistic corrections are expected to be small. We quantify this statement by extracting post-Newtonian estimates from Newtonian N-body simulations.Comment: 30 pages, 3 figures. Invited contribution to a Classical and Quantum Gravity focus issue on "Relativistic Effects in Cosmology", edited by Kazuya Koyam

    gevolution: a cosmological N-body code based on General Relativity

    Full text link
    We present a new N-body code, gevolution, for the evolution of large scale structure in the Universe. Our code is based on a weak field expansion of General Relativity and calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation which we write in terms of a canonical momentum such that it remains valid also for relativistic particles. We validate the code by considering the Schwarzschild solution and, in the Newtonian limit, by comparing with the Newtonian N-body codes Gadget-2 and RAMSES. We then proceed with a simulation of large scale structure in a Universe with massive neutrinos where we study the gravitational slip induced by the neutrino shear stress. The code can be extended to include different kinds of dark energy or modified gravity models and going beyond the usually adopted quasi-static approximation. Our code is publicly available.Comment: 28 pages + appendix, 10 figures. v2: revised and extended version accepted by JCAP; code available at https://github.com/gevolution-cod
    • …
    corecore