9 research outputs found
Human Dorsal Basal Ganglia Network.
<p>A dorsal basal ganglia network in the human brain was defined by placing a bilateral seed in Talairach coordinates in mm: +/-21; 0; 7. Top left image displays an axial, top right a sagittal and bottom image a coronal view of the human brain. Note the possitive FC-values of the bilateral putamen, as well as the supplementary motor area in the axial view, the unilateral sagittal view of putamen, and the coronal bilateral view of putamen. FC-values are displayed with a pseudo-colored scale bar; with increments of 0.2 each designated a color (see the color-bar in the image).</p
Human Ventral Basal Ganglia Network.
<p>A bilateral seed placed in Talairach coordinates in mm: +/-14; 5; -8 revealed the ventral basal ganglia network. Top left image displays an axial, top right a sagital and bottom image a coronal view of the human brain. Note the possitive FC-values of the bilateral nucleus accumbens in the axial view, the unilateral sagittal view of nucleus accumbens and the possitive FC-values in the caudate as well as putamen, and the coronal bilateral view of nucleus accumbens as well as lower possitive FC-values indicating a part of the ventromedial prefrontal cortical region. FC-values are displayed with a pseudo-colored scale bar; with increments of 0.2 each designated a color (see the color-bar in the image).</p
Rat Default Mode Network.
<p>When the bilateral seed was placed in the Rostral Anterior Cingulate Cortex approximately Bregma in mm: +/-0.5; 2.5; 1.7 the DMN was distinguished. Axial rat brain images are sorted from left to right in rostral to caudal order. The image to the far left shows positive color-coded FC-values in pre limbic cortex, infra limbic cortex, orbital cortex and cingulate cortex. The two middle images show positive FC-values in cingulate cortex, septal nuclei. Also, note the bilateral anticorrelated color-coded regions in the motor-sensory cortical region throughout the images. Note the lack of signal in hippocampus. FC-values are displayed with a pseudo-colored scale bar; with increments of 0.2 each designated a color (see the color-bar in the image).</p
Rat Ventral Basal Ganglia Network.
<p>This network was detected by placing the bilateral seed in approximately Bregma in mm: +/-1.5; 6.5; 1.7. Axial rat brain images are sorted from left to right in rostral to caudal order. The image to the far left shows bilateral lower positive FC-values in prefrontal cortex, and bilateral higher positive FC-values in the nucleus accumbens. The middle image shows bilateral positive FC-values in nucleus accumbens, and lower positive FC-values in medial caudate putamen as well as prefrontal cortex. The image to the far right shows positive FC-values in nucleus accumbens and lower positive FC-values in caudate putamen. FC-values are displayed with a pseudo-colored scale bar; with increments of 0.2 each designated a color (see the color-bar in the image).</p
Rat Seed Correlation Matrix.
<p>Note the high correlations between the somatosensory and motor regions as well as the high correlations between the seeds in the DMN. CPu = Caudatus Putamen, Acb = n. Accumbens, M1 = primary motor cortex, S1 = primary somatosensory cortex, RACC = Rostral Anterior Cingulate Cortex, DMN-Rost = PrL: Prelimbic Cortex DMN-Caud = Cg1: Cingulate Cortex, area 1. The values displayed are Fisher z-transformed correlation values.</p
Rat Dorsal Basal Ganglia Network.
<p>To define this network, a bilateral seed was placed at approximately Bregma in mm: +/-3.5; 4; -0.3. Axial rat brain images are sorted from left to right in rostral to caudal order. The images from the far left to the right all show bilateral positive FC-values bilateral caudate putamen and week positive FC-values in the rostral somatosensory cortex in the three images to the left. Note that all images also includes an anticorrelated caudal cingulate gyrus region. FC-values are displayed with a pseudo-colored scale bar; with increments of 0.2 each designated a color (see the color-bar in the image).</p
Seed placement in humans for; DMN, motor network, dorsal basal ganglia network, and ventral basal ganglia network.
<p>The coordinates of the seeds in the animal data, which all are placed in both brain hemispheres, were carefully placed with the help of Paxinos rat atlas [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0120345#pone.0120345.ref036" target="_blank">36</a>] to match the morphological structures as much as possible (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0120345#pone.0120345.t002" target="_blank">Table 2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0120345#pone.0120345.s001" target="_blank">S1 Fig.</a> for coordinates and seed placements).</p><p>Seed placement in humans for; DMN, motor network, dorsal basal ganglia network, and ventral basal ganglia network.</p
Seed placement in rat for; DMN, motor network, dorsal basal ganglia network, and ventral basal ganglia network.
<p>Seed placement in rat for; DMN, motor network, dorsal basal ganglia network, and ventral basal ganglia network.</p
Human Seed Correlation Matrix.
<p>Note the high correlations between the somatosensory and motor regions as well as the high correlations between the prefrontal regions of the brain. Put = Putamen, NAcc = Nucleus Accumbens, PriMot = Primary Motor Cortex, PriSen = Primary Sensory Cortex, DMN = Posterior Cingulate Cortex, Put-BA6 = Brodmann Area 6 within the Putamen network DMN-PFC = Prefrontal Cortex within the DMN, NAcc-BA10 = Brodmann Area 10 within the ventral basal ganglia network. The values displayed are Fisher z-transformed correlation values.</p