224 research outputs found

    Comparative assessment of performance and genome dependence among phylogenetic profiling methods

    Get PDF
    BACKGROUND: The rapidly increasing speed with which genome sequence data can be generated will be accompanied by an exponential increase in the number of sequenced eukaryotes. With the increasing number of sequenced eukaryotic genomes comes a need for bioinformatic techniques to aid in functional annotation. Ideally, genome context based techniques such as proximity, fusion, and phylogenetic profiling, which have been so successful in prokaryotes, could be utilized in eukaryotes. Here we explore the application of phylogenetic profiling, a method that exploits the evolutionary co-occurrence of genes in the assignment of functional linkages, to eukaryotic genomes. RESULTS: In order to evaluate the performance of phylogenetic profiling in eukaryotes, we assessed the relative performance of commonly used profile construction techniques and genome compositions in predicting functional linkages in both prokaryotic and eukaryotic organisms. When predicting linkages in E. coli with a prokaryotic profile, the use of continuous values constructed from transformed BLAST bit-scores performed better than profiles composed of discretized E-values; the use of discretized E-values resulted in more accurate linkages when using S. cerevisiae as the query organism. Extending this analysis by incorporating several eukaryotic genomes in profiles containing a majority of prokaryotes resulted in similar overall accuracy, but with a surprising reduction in pathway diversity among the most significant linkages. Furthermore, the application of phylogenetic profiling using profiles composed of only eukaryotes resulted in the loss of the strong correlation between common KEGG pathway membership and profile similarity score. Profile construction methods, orthology definitions, ontology and domain complexity were explored as possible sources of the poor performance of eukaryotic profiles, but with no improvement in results. CONCLUSION: Given the current set of completely sequenced eukaryotic organisms, phylogenetic profiling using profiles generated from any of the commonly used techniques was found to yield extremely poor results. These findings imply genome-specific requirements for constructing functionally relevant phylogenetic profiles, and suggest that differences in the evolutionary history between different kingdoms might generally limit the usefulness of phylogenetic profiling in eukaryotes

    Towards the identification of essential genes using targeted genome sequencing and comparative analysis

    Get PDF
    BACKGROUND: The identification of genes essential for survival is of theoretical importance in the understanding of the minimal requirements for cellular life, and of practical importance in the identification of potential drug targets in novel pathogens. With the great time and expense required for experimental studies aimed at constructing a catalog of essential genes in a given organism, a computational approach which could identify essential genes with high accuracy would be of great value. RESULTS: We gathered numerous features which could be generated automatically from genome sequence data and assessed their relationship to essentiality, and subsequently utilized machine learning to construct an integrated classifier of essential genes in both S. cerevisiae and E. coli. When looking at single features, phyletic retention, a measure of the number of organisms an ortholog is present in, was the most predictive of essentiality. Furthermore, during construction of our phyletic retention feature we for the first time explored the evolutionary relationship among the set of organisms in which the presence of a gene is most predictive of essentiality. We found that in both E. coli and S. cerevisiae the optimal sets always contain host-associated organisms with small genomes which are closely related to the reference. Using five optimally selected organisms, we were able to improve predictive accuracy as compared to using all available sequenced organisms. We hypothesize the predictive power of these genomes is a consequence of the process of reductive evolution, by which many parasites and symbionts evolved their gene content. In addition, essentiality is measured in rich media, a condition which resembles the environments of these organisms in their hosts where many nutrients are provided. Finally, we demonstrate that integration of our most highly predictive features using a probabilistic classifier resulted in accuracies surpassing any individual feature. CONCLUSION: Using features obtainable directly from sequence data, we were able to construct a classifier which can predict essential genes with high accuracy. Furthermore, our analysis of the set of genomes in which the presence of a gene is most predictive of essentiality may suggest ways in which targeted sequencing can be used in the identification of essential genes. In summary, the methods presented here can aid in the reduction of time and money invested in essential gene identification by targeting those genes for experimentation which are predicted as being essential with a high probability

    High-precision high-coverage functional inference from integrated data sources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information obtained from diverse data sources can be combined in a principled manner using various machine learning methods to increase the reliability and range of knowledge about protein function. The result is a weighted functional linkage network (FLN) in which linked neighbors share at least one function with high probability. Precision is, however, low. Aiming to provide precise functional annotation for as many proteins as possible, we explore and propose a two-step framework for functional annotation (1) construction of a high-coverage and reliable FLN via machine learning techniques (2) development of a decision rule for the constructed FLN to optimize functional annotation.</p> <p>Results</p> <p>We first apply this framework to <it>Saccharomyces cerevisiae</it>. In the first step, we demonstrate that four commonly used machine learning methods, Linear SVM, Linear Discriminant Analysis, Naïve Bayes, and Neural Network, all combine heterogeneous data to produce reliable and high-coverage FLNs, in which the linkage weight more accurately estimates functional coupling of linked proteins than use individual data sources alone. In the second step, empirical tuning of an adjustable decision rule on the constructed FLN reveals that basing annotation on maximum edge weight results in the most precise annotation at high coverages. In particular at low coverage all rules evaluated perform comparably. At coverage above approximately 50%, however, they diverge rapidly. At full coverage, the maximum weight decision rule still has a precision of approximately 70%, whereas for other methods, precision ranges from a high of slightly more than 30%, down to 3%. In addition, a scoring scheme to estimate the precisions of individual predictions is also provided. Finally, tests of the robustness of the framework indicate that our framework can be successfully applied to less studied organisms.</p> <p>Conclusion</p> <p>We provide a general two-step function-annotation framework, and show that high coverage, high precision annotations can be achieved by constructing a high-coverage and reliable FLN via data integration followed by applying a maximum weight decision rule.</p

    ASRP: the Arabidopsis Small RNA Project Database

    Get PDF
    Eukaryotes produce functionally diverse classes of small RNAs (20–25 nt). These include microRNAs (miRNAs), which act as regulatory factors during growth and development, and short-interfering RNAs (siRNAs), which function in several epigenetic and post-transcriptional silencing systems. The Arabidopsis Small RNA Project (ASRP) seeks to characterize and functionally analyze the major classes of endogenous small RNAs in plants. The ASRP database provides a repository for sequences of small RNAs cloned from various Arabidopsis genotypes and tissues. Version 3.0 of the database contains 1920 unique sequences, with tools to assist in miRNA and siRNA identification and analysis. The comprehensive database is publicly available through a web interface at http://asrp.cgrb.oregonstate.edu

    Genetic and Functional Diversification of Small RNA Pathways in Plants

    Get PDF
    Multicellular eukaryotes produce small RNA molecules (approximately 21–24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense

    Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal) and intrathoracic (bronchial) epithelium in healthy current and never smokers.</p> <p>Results</p> <p>Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome"), we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure.</p> <p>Conclusion</p> <p>Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for tobacco exposure as well as a non-invasive screening or diagnostic tool providing information about individual susceptibility to smoking-induced lung diseases.</p

    Strangers in the night: nightlife studies and new urban tourism

    Get PDF
    This paper draws together recent scholarship from the study of urban tourism and nightlife. Though studies of urban tourism do not always specifically address nightlife, and likewise studies of the night and nightlife do not always examine tourism, both bodies of research overlap in important ways. Concerns about commercialisation, gentrification, displacement, and urban change are to be found in both bodies of research. However, while the study of urban tourism typically recognises the erasure of the host / guest binary and seeks to destabilise the notion of who is a tourist or stranger, studies of nightlife often rest on a much clearer distinction between who belongs and who does not. An argument proposed here is that while the host / guest, tourist / non-tourist binary is perhaps reconfiguring, the night and nightlife spaces reinstate these binaries in various ways. This paper thinks through debates about tourists and residents in the night, focusing in particular on questions of belonging, place identification and gentrification through night-time uses
    corecore