23,334 research outputs found

    The color-singlet contribution to e^+ e^- ->J/psi + X at the endpoint

    Full text link
    Recent observations of the J/psi spectrum produced in e^+e^- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using Non-Relativsitic QCD effective theory (NRQCD). One problem is an enhancement in the cross section when the J/psi has maximal energy, due to large perturbative corrections (Sudakov logarithms). In a recent paper, the Sudakov logarithms in the color-octet contribution were summed by combining NRQCD with the Soft-Collinear Effective Theory. However to be consistent, the color-singlet contributions must also be summed in the endpoint region which was not done in that paper. In this paper, we sum the leading and next-to-leading logarithms in the color-singlet contribution to the J/psi production cross section. We find that the color-singlet cross section is suppressed near endpoint compared to the fixed order NRQCD prediction.Comment: 17 pages, 7 figure

    What Words Do We Use to Lie?: Word Choice in Deceptive Messages

    Full text link
    Text messaging is the most widely used form of computer- mediated communication (CMC). Previous findings have shown that linguistic factors can reliably indicate messages as deceptive. For example, users take longer and use more words to craft deceptive messages than they do truthful messages. Existing research has also examined how factors, such as student status and gender, affect rates of deception and word choice in deceptive messages. However, this research has been limited by small sample sizes and has returned contradicting findings. This paper aims to address these issues by using a dataset of text messages collected from a large and varied set of participants using an Android messaging application. The results of this paper show significant differences in word choice and frequency of deceptive messages between male and female participants, as well as between students and non-students

    Energy Network Communications and Expandable Control Mechanisms

    Get PDF
    A modular, expandable network requiring little or no calibration is something that is well sought after and would offer great benefits when used for distributed energy generation. Intelligent and adaptive control of such a network offers stability of supply from intermittent sources which, to date, has been hard to achieve. Key to the effective use of such control systems is communications, specifically the exchange of commands and status information between the control systems and the attached devices. Power-line communications has been used in various applications for years and would offer a good mechanism for interconnecting devices on a power grid without the expense of laying new cabling. By using clusters of devices managed by an IEMS (Intelligent Energy Management System) in a branching network fashion (not unlike the grid itself) it would be possible to manage large numbers of devices and high speed with relatively low bandwidth usage increasing the usable range of transmission. Implications of this include improving network efficiency through managed power distribution and increased security of supply

    Optimizing Energy Storage Participation in Emerging Power Markets

    Get PDF
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving.Comment: The full (longer and extended) version of the paper accepted in IGSC 201

    Gate-tunable coherent perfect absorption of terahertz radiation in graphene

    Full text link
    Perfect absorption of radiation in a graphene sheet may play a pivotal role in the realization of technologically relevant optoelectronic devices. In particular, perfect absorption of radiation in the terahertz (THz) spectral range would tremendously boost the utility of graphene in this difficult range of photon energies, which still lacks cheap and robust devices operating at room temperature. In this work we show that unpatterned graphene flakes deposited on appropriate substrates can display gate-tunable coherent perfect absorption (CPA) in the THz spectral range. We present theoretical estimates for the CPA operating frequency as a function of doping, which take into account the presence of common sources of disorder in graphene samples.Comment: To appear in 2D Material
    corecore