5 research outputs found

    More than Mere Numbers: The Impact of Lethal Control on the Social Stability of a Top-Order Predator

    Get PDF
    Population control of socially complex species may have profound ecological implications that remain largely invisible if only their abundance is considered. Here we discuss the effects of control on a socially complex top-order predator, the dingo (Canis lupus dingo). Since European occupation of Australia, dingoes have been controlled over much of the continent. Our aim was to investigate the effects of control on their abundance and social stability. We hypothesized that dingo abundance and social stability are not linearly related, and proposed a theoretical model in which dingo populations may fluctuate between three main states: (A) below carrying capacity and socially fractured, (B) above carrying capacity and socially fractured, or (C) at carrying capacity and socially stable. We predicted that lethal control would drive dingoes into the unstable states A or B, and that relaxation of control would allow recovery towards C. We tested our predictions by surveying relative abundance (track density) and indicators of social stability (scent-marking and howling) at seven sites in the arid zone subject to differing degrees of control. We also monitored changes in dingo abundance and social stability following relaxation and intensification of control. Sites where dingoes had been controlled within the previous two years were characterized by low scent-marking activity, but abundance was similar at sites with and without control. Signs of social stability steadily increased the longer an area was allowed to recover from control, but change in abundance did not follow a consistent path. Comparison of abundance and stability among all sites and years demonstrated that control severely fractures social groups, but that the effect of control on abundance was neither consistent nor predictable. Management decisions involving large social predators must therefore consider social stability to ensure their conservation and ecological functioning

    Energetic costs of mange in wolves estimated from infrared thermography

    Get PDF
    Parasites, by definition, extract energy from their hosts and thus affect trophic and food web dynamics even when the parasite may have limited effects on host population size. We studied the energetic costs of mange (Sarcoptes scabiei) in wolves (Canis lupus) using thermal cameras to estimate heat losses associated with compromised insulation during the winter. We combined the field data of known, naturally infected wolves with a data set on captive wolves with shaved patches of fur as a positive control to simulate mange-induced hair loss. We predict that during the winter in Montana, more severe mange infection increases heat loss by around 5.2-12 MJ per night (1,240-2,850 kcal, or a 65-78% increase) for small and large wolves, respectively, accounting for wind effects. To maintain body temperature would require a significant proportion of a healthy wolf\u27s total daily energy demands (18-22 MJ/day). We also predict how these thermal costs may increase in colder climates by comparing our predictions in Bozeman, Montana to those from a place with lower ambient temperatures (Fairbanks, Alaska). Contrary to our expectations, the 14°C differential between these regions was not as important as the potential differences in wind speed. These large increases in energetic demands can be mitigated by either increasing consumption rates or decreasing other energy demands. Data from GPS-collared wolves indicated that healthy wolves move, on average, 17 km per day, which was reduced by 1.5, 1.8, and 6.5 km for light, medium, and severe hair loss. In addition, the wolf with the most hair loss was less active at night and more active during the day, which is the converse of the movement patterns of healthy wolves. At the individual level, mange infections create significant energy demands and altered behavioral patterns, this may have cascading effects on prey consumption rates, food web dynamics, predator-prey interactions, and scavenger communities

    A Raman-Based Imaging Method for Characterizing the Molecular Adsorption and Spatial Distribution of Silver Nanoparticles on Hydrated Mineral Surfaces

    No full text
    Although minerals are known to affect the environmental fate and transformation of heavy-metal ions, little is known about their interaction with the heavily exploited silver nanoparticles (AgNPs). Proposed here is a combination of hitherto under-utilized micro-Raman-based mapping and chemometric methods for imaging the distribution of AgNPs on various mineral surfaces and their molecular interaction mechanisms. The feasibility of the Raman-based imaging method was tested on two macro- and microsized mineral models, muscovite [KAl<sub>2</sub>(AlSi<sub>3</sub>O<sub>10</sub>)­(OH)<sub>2</sub>] and corundum (α-Al<sub>2</sub>O<sub>3</sub>), under key environmental conditions (ionic strength and pH). Both AgNPs<sup>–</sup> and AgNPs<sup>+</sup> were found to covalently attach to corundum (pH<sub>pzc</sub> = 9.1) through the formation of Ag–O–Al– bonds and thereby to potentially experience reduced environmental mobility. Because label-free Raman imaging showed no molecular interactions between AgNPs<sup>–</sup> and muscovite (pH<sub>pzc</sub> = 7.5), a label-enhanced Raman imaging approach was developed for mapping the scarce spatial distribution of AgNPs<sup>–</sup> on such mineral surfaces. Raman maps comprising of <i>n</i> = 625–961 spectra for each sample/control were rapidly analyzed in Vespucci, a free open-source software, and the results were confirmed via ICP-OES, AFM, and SEM-EDX. The proposed Raman-based imaging requires minimum to no sample preparation; is sensitive, noninvasive, cost-effective; and might be extended to other environmentally relevant systems
    corecore