836 research outputs found

    Anisotropic cosmological solutions to the Y(R)F2Y(R)F^2 gravity

    Get PDF
    We investigate anisotropic cosmological solutions of the theory with non-minimal couplings between electromagnetic fields and gravity in Y(R)F2Y(R) F^2 form. After we derive the field equations by the variational principle, we look for spatially flat cosmological solutions with magnetic fields or electric fields. Then we give exact anisotropic solutions by assuming the hyperbolic expansion functions. We observe that the solutions approach to the isotropic case in late-times.Comment: 16 pages, 5 figure

    Negative thermal expansion in the Prussian Blue analog Zn3[Fe(CN)6]2: X-ray diffraction and neutron vibrational studies

    Full text link
    The cubic Prussian Blue (PB) analog, Zn3 [Fe(CN)6]2, has been studied by X-ray powder diffraction and inelastic neutron scattering (INS). X-ray data collected at 300 and 84 K revealed negative thermal expansion (NTE) behaviour for this material. The NTE coefficient was found to be -31.1 x 10-6 K-1. The neutron vibrational spectrum for Zn3[Fe(CN)6]2.xH2O, was studied in detail. The INS spectrum showed well-defined, well-separated bands corresponding to the stretching of and deformation modes of the Fe and Zn octahedra, all below 800 cm-1.Comment: 4 pages, 3 figure

    Phase Change Materials in Buildings: Fundamentals, Applications, and Future Perspectives

    Get PDF
    This chapter thoroughly explores Phase Change Materials (PCMs) and their applications in buildings. It begins by introducing the background, context, and objectives before delving into PCM fundamentals, covering types, phase change mechanisms, and key properties. Beyond theory, the chapter explores practical applications in thermal regulation, energy efficiency, HVAC systems, thermal energy storage, passive building design, heat recovery, and PCM integration. Discussion includes various PCM types—organic, inorganic, eutectic mixes, and bio-based—alongside selection criteria for building applications. Methods to enhance PCM performance, such as nano-enhancements, microencapsulation, and hybrid solutions, are explored. The chapter addresses integration and design considerations and concludes with insights into future directions, trends, and implications for sustainable building practices

    Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives

    Get PDF
    The cement industry plays a significant role in global carbon emissions, underscoring the urgent need for measures to transition it toward a net-zero carbon footprint. This paper presents a detailed plan to this end, examining the current state of the cement sector, its carbon output, and the imperative for emission reduction. It delves into various low-CO2 technologies and emerging innovations such as alkali-activated cements, calcium looping, electrification, and bio-inspired materials. Economic and policy factors, including cost assessments and governmental regulations, are considered alongside challenges and potential solutions. Concluding with future prospects, the paper offers recommendations for policymakers, industry players, and researchers, highlighting the roadmap's critical role in achieving a carbon-neutral cement sector

    Advances and perspectives in engineered cementitious composites: a comprehensive review

    Get PDF
    Engineered Cementitious Composites (ECC) have garnered significant attention within the construction industry due to their exceptional mechanical properties and durability. This thorough review presents a meticulous analysis of the progress and prospects in ECC research. It commences by introducing the background and rationale for investigating ECC, while outlining the objectives of the review. The review provides an encompassing overview of ECC, encompassing its definition, characteristics, historical development, composition, and constituent materials. Emphasis is placed on the examination of ECC's mechanical properties, specifically its flexural behaviour, tensile behaviour, compressive strength, and resistance to environmental factors. Furthermore, the rheological properties of ECC, including workability, flowability, self-healing, crack mitigation, viscosity, and thixotropy, are discussed in detail. The review delves into the influence of fibre reinforcement on ECC, encompassing the types of fibres utilised, their impact on mechanical and structural properties, as well as fibre dispersion and orientation. Additionally, it explores the diverse applications of ECC across various fields, such as structural applications and sustainable building practices. The challenges and limitations associated with ECC, such as cost and availability, are addressed, alongside an exploration of future trends and research directions

    Spinor couplings to dilaton gravity induced by the dimensional reduction of topologically massive gravity

    Full text link
    A Dirac spinor is coupled to topologically massive gravity and the D=3 dimensional action is reduced to D=2 dimensions with a metric that includes both the electromagnetic potential 1-form A and a dilaton scalar \phi. The dimensionnaly reduced spinor is made a mass eigenstate with a (local) chiral rotation. The non-trivial interactions thus induced are discussed.Comment: 8 pages, no figure

    Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations

    Get PDF
    This review paper provides a comprehensive analysis of cement-based solidification and immobilisation of nuclear waste. It covers various aspects including mechanisms, formulations, testing and regulatory considerations. The paper begins by emphasizing the importance of nuclear waste management and the associated challenges. It explores the mechanisms and principles in cement-based solidification, with a particular focus on the interaction between cement and nuclear waste components. Different formulation considerations are discussed, encompassing factors such as cement types, the role of additives and modifiers. The review paper also examines testing and characterisation methods used to assess the physical, chemical and mechanical properties of solidified waste forms. Then the paper addresses the regulatory considerations and compliance requirements for cement-based solidification. The paper concludes by critically elaborating on the current challenges, emerging trends and future research needs in the field. Overall, this review paper offers a comprehensive overview of cement-based solidification, providing valuable insights for researchers, practitioners and regulatory bodies involved in nuclear waste management
    corecore