5,191 research outputs found
Paradoxical popups: Why are they hard to catch?
Even professional baseball players occasionally find it difficult to
gracefully approach seemingly routine pop-ups. This paper describes a set of
towering pop-ups with trajectories that exhibit cusps and loops near the apex.
For a normal fly ball, the horizontal velocity is continuously decreasing due
to drag caused by air resistance. But for pop-ups, the Magnus force (the force
due to the ball spinning in a moving airflow) is larger than the drag force. In
these cases the horizontal velocity decreases in the beginning, like a normal
fly ball, but after the apex, the Magnus force accelerates the horizontal
motion. We refer to this class of pop-ups as paradoxical because they appear to
misinform the typically robust optical control strategies used by fielders and
lead to systematic vacillation in running paths, especially when a trajectory
terminates near the fielder. In short, some of the dancing around when
infielders pursue pop-ups can be well explained as a combination of bizarre
trajectories and misguidance by the normally reliable optical control strategy,
rather than apparent fielder error. Former major league infielders confirm that
our model agrees with their experiences.Comment: 28 pages, 10 figures, sumitted to American Journal of Physic
Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector.
One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34(+) cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor, and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC showed increased colony formation compared with 21% oxygen without NAC (P<0.03), showed increased resistance to mitomycin C compared with green fluorescent protein (GFP) vector-transduced controls (P<0.007), and increased survival. Thus, combining short transduction and reducing oxidative stress may enhance the viability and engraftment of gene-corrected cells in patients with FANCA
A Close-Up Look at PCR
The Polymerase Chain Reaction (PCR) is a fundamental laboratory technique that allows for the amplification of many copies of a desired DNA target sequence. Despite its prevalence, undergraduate students often have poor comprehension about the underlying molecular mechanisms of PCR and the components necessary to carry out the reaction. We designed an interactive modeling activity to help students visualize the underlying molecular processes of denaturation, annealing, and extension, and to see how PCR parallels in vivo DNA replication. During the activity, students mimic denaturation, annealing, and extension by synthesizing DNA strands from individual nucleotides and primers in the 5’ to 3’ direction. Because they carry out three cycles, students construct and observe the intermediate products that lead to the exponential amplification of the target sequence. Instructors can easily assemble kits from relatively inexpensive foam nucleotide pieces, and the models can be reused indefinitely. Field testing with first and second year undergraduates suggested that students productively interacted with the models to improve their understanding of PCR
Physical State of Molecular Gas in High Galactic Latitude Translucent Clouds
The rotational transitions of carbon monoxide (CO) are the primary means of
investigating the density and velocity structure of the molecular interstellar
medium. Here we study the lowest four rotational transitions of CO towards
high-latitude translucent molecular clouds (HLCs). We report new observations
of the J = (4-3), (2-1), and (1-0) transitions of CO towards eight
high-latitude clouds. The new observations are combined with data from the
literature to show that the emission from all observed CO transitions is
linearly correlated. This implies that the excitation conditions which lead to
emission in these transitions are uniform throughout the clouds. Observed
13CO/12CO (1-0) integrated intensity ratios are generally much greater than the
expected abundance ratio of the two species, indicating that the regions which
emit 12CO (1-0) radiation are optically thick. We develop a statistical method
to compare the observed line ratios with models of CO excitation and radiative
transfer. This enables us to determine the most likely portion of the physical
parameter space which is compatible with the observations. The model enables us
to rule out CO gas temperatures greater than 30K since the most likely
high-temperature configurations are 1 pc-sized structures aligned along the
line of sight. The most probable solution is a high density and low temperature
(HDLT) solution. The CO cell size is approximately 0.01 pc (2000 AU). These
cells are thus tiny fragments within the 100 times larger CO-emitting extent of
a typical high-latitude cloud. We discuss the physical implications of HDLT
cells, and we suggest ways to test for their existence.Comment: 19 pages, 13 figures, 2 tables, emulateapj To be published in The
Astrophysical Journa
Recommended from our members
Modeling Natural Hazards Engineering Data to Cyberinfrastructure
DesignSafe-CI is an end-to-end data lifecycle management, analysis, and publication cloud platform for natural hazards engineering. To facilitate ongoing data curation and sharing in a cloud environment that is intuitive to the end users, developers and curators teamed with experts in the different hazards to design data models and vocabularies that map their research workflows and domain terminology. The experimental data models - six - emphasize provenance through relationships between research processes, data and their documentation, and highlight commonalities between experiment types. They mediate between the user interface and the repository layers of the cyberinfrastructure to automate tasks such as organizing data and facilitating its description. Using data from triaxial experiments, we conducted a user evaluation of the geotechnical data model, both for its fitness to real data and for purposes of data understandability during reuse. The results of the evaluation guided testing and selection of the Fedora 4 repository backend to enhance data discovery and reuse.National Science FoundationTexas Advanced Computing Center (TACC
Angular analysis and branching fraction measurement of the decay B0→K*0μ+μ−
The angular distributions and the differential branching fraction of the decay B0→K*(892)0μ+μ− are studied using a data sample corresponding to an integrated luminosity of 5.2 fb−1collected with the CMS detector at the LHC in pp collisions at √s=7 TeV. From more than 400 signal decays, the forward–backward asymmetry of the muons, the K*(892)0 longitudinal polarization fraction, and the differential branching fraction are determined as a function of the square of the dimuon invariant mass. The measurements are in good agreement with standard model predictions
- …