19 research outputs found

    Egg parasitoids of the tea green leafhopper Empoasca onukii (Hemiptera, Cicadellidae) in Japan, with description of a new species of Anagrus (Hymenoptera, Mymaridae)

    Get PDF
    Fairyfly (Hymenoptera, Mymaridae) egg parasitoids of the tea green leafhopper Empoasca (Matsumurasca) onukii Matsuda (Hemiptera, Cicadellidae), an economically important pest in Asia of the tea plant, Camellia sinensis, were identified from specimens reared in Japan. Using a combination of genetic and morphological evidence, Anagrus (Anagrus) rugmanjonesi Triapitsyn & Adachi-Hagimori, sp. n., is described and illustrated. It is shown to be different from the most similar A. turpanicus Triapitsyn & Hu, an egg parasitoid of a leafhopper pest of cultivated grapes which is known from Xinjiang Uyghur Autonomous Region in China. Mitochondrial and nuclear ribosomal DNA sequence data provide clear evidence for the separation of A. rugmanjonesi from A. turpanicus and other members of the Anagrus incarnatus Haliday species complex. A key to females of the Japanese species of Anagrus Haliday is given. Two other species of Mymaridae, Arescon enocki (Subba Rao & Kaur) and Stethynium empoascae Subba Rao, are also identified, albeit the latter one only tentatively. Both latter taxa are newly recorded from Japan, and E. onukii represents their new host association

    Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels

    Get PDF
    Many intracellular microbial symbionts of arthropods are strictly vertically transmitted and manipulate their host's reproduction in ways that enhance their own transmission. Rare horizontal transmission events are nonetheless necessary for symbiont spread to novel host lineages. Horizontal transmission has been mostly inferred from phylogenetic studies but the mechanisms of spread are still largely a mystery. Here, we investigated transmission of two distantly related bacterial symbionts – Rickettsia and Hamiltonella – from their host, the sweet potato whitefly, Bemisia tabaci, to three species of whitefly parasitoids: Eretmocerus emiratus, Eretmocerus eremicus and Encarsia pergandiella. We also examined the potential for vertical transmission of these whitefly symbionts between parasitoid generations. Using florescence in situ hybridization (FISH) and transmission electron microscopy we found that Rickettsia invades Eretmocerus larvae during development in a Rickettsia-infected host, persists in adults and in females, reaches the ovaries. However, Rickettsia does not appear to penetrate the oocytes, but instead is localized in the follicular epithelial cells only. Consequently, Rickettsia is not vertically transmitted in Eretmocerus wasps, a result supported by diagnostic polymerase chain reaction (PCR). In contrast, Rickettsia proved to be merely transient in the digestive tract of Encarsia and was excreted with the meconia before wasp pupation. Adults of all three parasitoid species frequently acquired Rickettsia via contact with infected whiteflies, most likely by feeding on the host hemolymph (host feeding), but the rate of infection declined sharply within a few days of wasps being removed from infected whiteflies. In contrast with Rickettsia, Hamiltonella did not establish in any of the parasitoids tested, and none of the parasitoids acquired Hamiltonella by host feeding. This study demonstrates potential routes and barriers to horizontal transmission of symbionts across trophic levels. The possible mechanisms that lead to the differences in transmission of species of symbionts among species of hosts are discussed

    A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera

    No full text
    Vertically transmitted endosymbiotic bacteria, such as Wolbachia, Cardinium and Rickettsia, modify host reproduction in several ways to facilitate their own spread. One such modification results in parthenogenesis induction, where males, which are unable to transmit the bacteria, are not produced. In Hymenoptera, the mechanism of diploidization due to Wolbachia infection, known as gamete duplication, is a post-meiotic modification. During gamete duplication, the meiotic mechanism is normal, but in the first mitosis the anaphase is aborted. The two haploid sets of chromosomes do not separate and thus result in a single nucleus containing two identical sets of haploid chromosomes. Here, we outline an alternative cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. During female gamete formation in Rickettsia-infected Neochrysocharis formosa (Westwood) parasitoids, meiotic cells undergo only a single equational division followed by the expulsion of a single polar body. This absence of meiotic recombination and reduction corresponds well with a non-segregation pattern in the offspring of heterozygous females. We conclude that diploidy in N. formosa is maintained through a functionally apomictic cloning mechanism that differs entirely from the mechanism induced by Wolbachia

    Egg parasitoids of Arboridia apicalis (Nawa, 1913) (Hemiptera, Cicadellidae), a leafhopper pest of grapevines in Japan, with description of a new species of Anagrus Haliday, 1833 (Hymenoptera, Mymaridae)

    No full text
    Several species of egg parasitoids (Hymenoptera: Mymaridae and Trichogrammatidae) of the leafhopper pest of grapevines in Japan, Arboridia (Arboridia) apicalis (Nawa) (Hemiptera, Cicadellidae), were reared and identified for the first time. Using a combination of genetic and morphological evidence, Anagrus (Anagrus) arboridiae Triapitsyn & Adachi-Hagimori, sp. nov. (Mymaridae) is described and illustrated from Honshu Island (Shimane Prefecture) and Kyushu Island (Miyazaki Prefecture). It is shown to be different from Anagrus (Anagrus) japonicus Sahad and A. flaviapex Chiappini & Lin, to which it is most similar; the latter species was originally described from China and is newly recorded here from Okinawa Island, Japan. Mitochondrial and nuclear ribosomal DNA sequence data provide clear evidence for the separation of A. arboridiae from A. flaviapex, A. japonicus, and some other members of the Anagrus (Anagrus) atomus (L.) species group. Two other species of Anagrus Haliday, A. (Anagrus) avalae Soyka and A. atomus, are also identified in Japan from eggs of the leafhoppers Edwardsiana ishidae (Matsumura) and Eurhadina ? betularia Anufriev, respectively. An updated key to females of the Japanese species of Anagrus is given. Oligosita pallida Kryger (a new record for Japan), Oligosita sp., and an Aphelinoidea (Aphelinoidea) sp. (Trichogrammatidae) were the other, although much less abundant, apparent egg parasitoids of A. apicalis in Shimane Prefecture, mainly in non-organic vineyards

    Multiple paternity within field-collected egg cases of the praying mantid Tenodera aridifolia

    No full text
    Abstract We developed microsatellite loci to examine the occurrence of multiple paternity in the praying mantid Tenodera aridifolia Stoll, as inferred from the genotypes of the progeny within field-collected oothecae (egg cases). The microsatellite locus MTA, developed from field-caught mantids, was found to have three alleles (A, B, and C) among &amp;gt;600 hatchlings from 18 oothecae from two locations in Japan. Of the 18 oothecae, two show clear evidence of multiple sires, two show equivocal evidence of multiple sires, and the remaining 14 do not show evidence of multiple sires. Thirteen of the latter 14 oothecae are exclusively homozygous, with all progeny being of the same genotype (BB). Although the exclusively homozygous oothecae suggest a high incidence of monogamy in these field populations, we caution that we probably underestimated the incidence of multiple paternity, given our use of one locus with three alleles. This study is the first genetic investigation of field-collected progeny of a sexually cannibalistic species, as well as the first demonstration of multiple paternity in nature for a sexually cannibalistic species.</jats:p
    corecore