8 research outputs found

    Mycobacterium bolletii Respiratory Infections

    Get PDF
    Contrary to other species in the Mycobacterium chelonae-abscessus complex, we reidentified M. bolletii strains isolated from 4 respiratory patients and found these strains to be uniformly resistant to clarithromycin. No mutations previously associated with macrolide resistance in bacteria were detected in either the 23S rDNA or the genes encoding riboproteins L4 and L22

    Core Gene Set As the Basis of Multilocus Sequence Analysis of the Subclass Actinobacteridae

    Get PDF
    Comparative genomic sequencing is shedding new light on bacterial identification, taxonomy and phylogeny. An in silico assessment of a core gene set necessary for cellular functioning was made to determine a consensus set of genes that would be useful for the identification, taxonomy and phylogeny of the species belonging to the subclass Actinobacteridae which contained two orders Actinomycetales and Bifidobacteriales. The subclass Actinobacteridae comprised about 85% of the actinobacteria families. The following recommended criteria were used to establish a comprehensive gene set; the gene should (i) be long enough to contain phylogenetically useful information, (ii) not be subject to horizontal gene transfer, (iii) be a single copy (iv) have at least two regions sufficiently conserved that allow the design of amplification and sequencing primers and (v) predict whole-genome relationships. We applied these constraints to 50 different Actinobacteridae genomes and made 1,224 pairwise comparisons of the genome conserved regions and gene fragments obtained by using Sequence VARiability Analysis Program (SVARAP), which allow designing the primers. Following a comparative statistical modeling phase, 3 gene fragments were selected, ychF, rpoB, and secY with R2>0.85. Selected sets of broad range primers were tested from the 3 gene fragments and were demonstrated to be useful for amplification and sequencing of 25 species belonging to 9 genera of Actinobacteridae. The intraspecies similarities were 96.3–100% for ychF, 97.8–100% for rpoB and 96.9–100% for secY among 73 strains belonging to 15 species of the subclass Actinobacteridae compare to 99.4–100% for 16S rRNA. The phylogenetic topology obtained from the combined datasets ychF+rpoB+secY was globally similar to that inferred from the 16S rRNA but with higher confidence. It was concluded that multi-locus sequence analysis using core gene set might represent the first consensus and valid approach for investigating the bacterial identification, phylogeny and taxonomy

    rpoB-Based Identification of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria

    No full text
    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) are increasingly isolated in clinical microbiology laboratories. Their accurate identification remains problematic because classification is labor intensive work and because new taxa are not often incorporated into classification databases. Also, 16S rRNA gene sequence analysis underestimates RGM diversity and does not distinguish between all taxa. We determined the complete nucleotide sequence of the rpoB gene, which encodes the bacterial β subunit of the RNA polymerase, for 20 RGM type strains. After using in-house software which analyzes and graphically represents variability stretches of 60 bp along the nucleotide sequence, our analysis focused on a 723-bp variable region exhibiting 83.9 to 97% interspecies similarity and 0 to 1.7% intraspecific divergence. Primer pair Myco-F-Myco-R was designed as a tool for both PCR amplification and sequencing of this region for molecular identification of RGM. This tool was used for identification of 63 RGM clinical isolates previously identified at the species level on the basis of phenotypic characteristics and by 16S rRNA gene sequence analysis. Of 63 clinical isolates, 59 (94%) exhibited <2% partial rpoB gene sequence divergence from 1 of 20 species under study and were regarded as correctly identified at the species level. Mycobacterium abscessus and Mycobacterium mucogenicum isolates were clearly distinguished from Mycobacterium chelonae; Mycobacterium mageritense isolates were clearly distinguished from “Mycobacterium houstonense.” Four isolates were not identified at the species level because they exhibited >3% partial rpoB gene sequence divergence from the corresponding type strain; they belonged to three taxa related to M. mucogenicum, Mycobacterium smegmatis, and Mycobacterium porcinum. For M. abscessus and M. mucogenicum, this partial sequence yielded a high genetic heterogeneity within the clinical isolates. We conclude that molecular identification by analysis of the 723-bp rpoB sequence is a rapid and accurate tool for identification of RGM

    Report of Two Fatal Cases of Mycobacterium mucogenicum Central Nervous System Infection in Immunocompetent Patients

    No full text
    Neurological infections due to rapidly growing mycobacteria (RGM) have rarely been reported. We recently investigated two unrelated immunocompetent patients, one with community-acquired lymphocytic meningitis and the other with cerebral thrombophlebitis. Mycobacterium mucogenicum was isolated in pure culture and detected by PCR sequencing of cerebrospinal fluid samples. Both patients eventually died. The two isolates exhibited an overlapping antimicrobial susceptibility pattern. They were susceptible in vitro to tetracyclines, macrolides, quinolones, amikacin, imipenem, cefoxitin, and trimethoprim-sulfamethoxazole and resistant to ceftriaxone. They shared 100% 16S rRNA gene sequence similarity with M. mucogenicum ATCC 49650(T) over 1,482 bp. Their partial rpoB sequences shared 97.8% and 98.1% similarity with M. mucogenicum ATCC 49650(T), suggesting that the two isolates were representative of two sequevars of M. mucogenicum species. This case report should make clinicians aware that M. mucogenicum, an RGM frequently isolated from tap water or from respiratory specimens and mostly without clinical significance, can even be encountered in the central nervous system of immunocompetent patients

    Amoebal Coculture of “Mycobacterium massiliense” sp. nov. from the Sputum of a Patient with Hemoptoic Pneumonia

    No full text
    A nonphotochromogenic, rapidly growing Mycobacterium strain was isolated in pure culture from the sputum and the bronchoalveolar fluid of a patient with hemoptoic pneumonia by using axenic media and an amoebal coculture system. Both isolates grew in less than 7 days at 24 to 37°C with an optimal growth temperature of 30°C. The isolates exhibited biochemical and antimicrobial susceptibility profiles overlapping those of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium immunogenum, indicating that they belonged to M. chelonae-M. abscessus group. They differed from M. abscessus in β-galactosidase, β-N-acetyl-β-glucosaminidase, and β-glucuronidase activities and by the lack of nitrate reductase and indole production activities, as well as in their in vitro susceptibilities to minocycline and doxycycline. These isolates and M. abscessus differed from M. chelonae and M. immunogenum by exhibiting gelatinase and tryptophane desaminase activities. Their 16S rRNA genes had complete sequence identity with that of M. abscessus and >99.6% similarity with those of M. chelonae and M. immunogenum. Further molecular investigations showed that partial hsp65 and sodA gene sequences differed from that of M. abscessus by five and three positions over 441 bp, respectively. Partial rpoB and recA gene sequence analyses showed 96 and 98% similarities with M. abscessus, respectively. Similarly, 16S-23S rRNA internal transcribed spacer sequence of the isolates differed from that of M. abscessus by a A→G substitution at position 60 and a C insertion at position 102. Phenotypic and genotypic features of these two isolates indicated that they were representative of a new mycobacterial species within the M. chelonae-M. abscessus group. Phylogenetic analysis suggested that these isolates were perhaps recently derived from M. abscessus. We propose the name of “Mycobacterium massiliense” for this new species. The type strain has been deposited in the Collection Institut Pasteur as CIP 108297(T) and in Culture Collection of the University of Göteborg, Göteborg, Sweden, as CCUG 48898(T)
    corecore